A low cost Arnoldi method for large linear initial value problems
暂无分享,去创建一个
[1] Helmut Podhaisky,et al. Numerical experiments with Krylov integrators , 1998 .
[2] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[3] I. Moret,et al. An interpolatory approximation of the matrix exponential based on Faber polynomials , 2001 .
[4] Marco Vianello,et al. Efficient approximation of the exponential operator for discrete 2D advection–diffusion problems , 2003, Numer. Linear Algebra Appl..
[5] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[6] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[7] P. Novati. A polynomial method based on Fejèr points for the computation of functions of unsymmetric matrices , 2003 .
[8] P. Novati,et al. Solving linear initial value problems by Faber polynomials , 2003, Numer. Linear Algebra Appl..
[9] B. A. Schmitt,et al. ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs , 1997 .
[10] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[11] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[12] Marco Vianello,et al. Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..