Parrondo Games as Lattice Gas Automata

Parrondo games are coin flipping games with the surprising property that alternating plays of two losing games can produce a winning game. We show that this phenomenon can be modelled by probabilistic lattice gas automata. Furthermore, motivated by the recent introduction of quantum coin flipping games, we show that quantum lattice gas automata provide an interesting definition for quantum Parrondo games.

[1]  M. Smoluchowski,et al.  Über Brown'sche Molekularbewegung unter Einwirkung äußerer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung , 1916 .

[2]  Y. Pomeau,et al.  Time evolution of a two‐dimensional model system. I. Invariant states and time correlation functions , 1973 .

[3]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .

[4]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[5]  Lord Rayleigh F.R.S. XVI. On james Bernouilli's theorem in probabilities , 1899 .

[6]  David A. Meyer QUANTUM MECHANICS OF LATTICE GAS AUTOMATA : ONE-PARTICLE PLANE WAVES AND POTENTIALS , 1997 .

[7]  Linke,et al.  Experimental tunneling ratchets , 1999, Science.

[8]  Derek Abbott,et al.  Parrondo's paradox , 1999 .

[9]  Eugene R. Speer,et al.  Microscopic Shock Structure in Model Particle Systems: The Boghosian-Levermore Cellular Automation Revisited , 1991 .

[10]  R. Leighton,et al.  The Feynman Lectures on Physics; Vol. I , 1965 .

[11]  Fritz Sauter,et al.  Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs , 1931 .

[12]  L. Rayleigh,et al.  The theory of sound , 1894 .

[13]  Geoffrey Ingram Taylor,et al.  Diffusion by Continuous Movements , 1922 .

[14]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[15]  Derek Abbott,et al.  Game theory: Losing strategies can win by Parrondo's paradox , 1999, Nature.

[16]  Abbott,et al.  New paradoxical games based on brownian ratchets , 2000, Physical review letters.

[17]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[18]  David A. Meyer Quantum Lattice Gases and Their Invariants , 1997 .

[19]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[20]  Zanetti,et al.  Hydrodynamics of lattice-gas automata. , 1989, Physical review. A, General physics.

[21]  DeWitt-Morette,et al.  Path-integral solutions of wave equations with dissipation. , 1989, Physical review letters.

[22]  Washington Taylor,et al.  A Quantum Lattice-Gas Model for the Many-Particle Schroedinger Equation , 1996 .

[23]  C. Doering,et al.  Randomly rattled ratchets , 1995 .

[24]  David A. Meyer,et al.  Lattice gases and exactly solvable models , 1992 .

[25]  Y. Pomeau,et al.  Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .

[26]  Nayak Ashwin,et al.  Quantum Walk on the Line , 2000 .

[27]  Derek Abbott,et al.  The problem of detailed balance for the Feynman-Smoluchowski Engine (FSE) and the Multiple Pawl Paradox , 2000 .

[28]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[29]  P. A. Cook Relativistic harmonic oscillators with intrinsic spin structure , 1971 .

[30]  Kaplan,et al.  Optical thermal ratchet. , 1995, Physical review letters.

[31]  D. Itô,et al.  An example of dynamical systems with linear trajectory , 1967 .

[32]  F. M. Toyama,et al.  Behaviour of wavepackets of the 'Dirac oscillator': Dirac representation versus Foldy - Wouthuysen representation , 1997 .

[33]  David A. Meyer Quantum mechanics of lattice gas automata: boundary conditions and other inhomogeneities , 1997 .

[34]  Yi-Cheng Zhang,et al.  Emergence of cooperation and organization in an evolutionary game , 1997 .

[35]  M. Smoluchowski,et al.  Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene , 1927 .

[36]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[37]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[38]  M. Moshinsky,et al.  The Dirac oscillator , 1989 .

[39]  D. Meyer On the absence of homogeneous scalar unitary cellular automata , 1996, quant-ph/9604011.

[40]  Charles E. M. Pearce On Parrondo’s paradoxical games , 2000 .

[41]  Axel Lorke,et al.  Far-infrared and transport properties of antidot arrays with broken symmetry , 1998 .

[42]  Simon C. Benjamin,et al.  Multiplayer quantum games , 2001 .

[43]  M. Grifoni Quantum Ratchets , 1999, Science.

[44]  David A. Meyer,et al.  Physical quantum algorithms , 2002 .

[45]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[46]  W. Arthur Inductive Reasoning and Bounded Rationality , 1994 .

[47]  P. Hänggi,et al.  NONADIABATIC QUANTUM BROWNIAN RECTIFIERS , 1998 .

[48]  M. Kikuchi,et al.  Dissipation Enhanced Asymmetric Transport in Quantum Ratchets , 1997, cond-mat/9711045.

[49]  M. Kac A stochastic model related to the telegrapher's equation , 1974 .

[50]  A. Ajdari,et al.  Directional motion of brownian particles induced by a periodic asymmetric potential , 1994, Nature.

[51]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[52]  F. M. Toyama,et al.  Coherent state of the Dirac oscillator , 1996 .

[53]  P. Español,et al.  Criticism of Feynman’s analysis of the ratchet as an engine , 1996 .