A cluster validity index for fuzzy clustering

Cluster validity indexes have been used to evaluate the fitness of partitions produced by clustering algorithms. This paper presents a new validity index for fuzzy clustering called a partition coefficient and exponential separation (PCAES) index. It uses the factors from a normalized partition coefficient and an exponential separation measure for each cluster and then pools these two factors to create the PCAES validity index. Considerations involving the compactness and separation measures for each cluster provide different cluster validity merits. In this paper, we also discuss the problem that the validity indexes face in a noisy environment. The efficiency of the proposed PCAES index is compared with several popular validity indexes. More information about these indexes is acquired in series of numerical comparisons and also three real data sets of Iris, Glass and Vowel. The results of comparative study show that the proposed PCAES index has high ability in producing a good cluster number estimate and in addition, it provides a new point of view for cluster validity in a noisy environment.

[1]  James M. Keller,et al.  Will the real iris data please stand up? , 1999, IEEE Trans. Fuzzy Syst..

[2]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  E. Trauwaert On the meaning of Dunn's partition coefficient for fuzzy clusters , 1988 .

[5]  J. Bezdek,et al.  Detection and Characterization of Cluster Substructure II. Fuzzy c-Varieties and Convex Combinations Thereof , 1981 .

[6]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[7]  R. Gunderson Application of Fuzzy Isodata Algorithms to Star Tracker Pointing Systems , 1978 .

[8]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[9]  Miin-Shen Yang A survey of fuzzy clustering , 1993 .

[10]  Anil K. Jain,et al.  A Clustering Performance Measure Based on Fuzzy Set Decomposition , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Rajesh N. Davé,et al.  Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries , 1992, Pattern Recognit..

[12]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[13]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[14]  Sankar K. Pal,et al.  Entropy: a new definition and its applications , 1991, IEEE Trans. Syst. Man Cybern..

[15]  Jian Yu,et al.  Analysis of the weighting exponent in the FCM , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[16]  Sankar K. Pal,et al.  Some properties of the exponential entropy , 1992, Inf. Sci..

[17]  Noureddine Zahid,et al.  A new cluster-validity for fuzzy clustering , 1999, Pattern Recognit..

[18]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[20]  J. Bezdek,et al.  DETECTION AND CHARACTERIZATION OF CLUSTER SUBSTRUCTURE I. LINEAR STRUCTURE: FUZZY c-LINES* , 1981 .

[21]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. II , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[22]  Jongwoo Kim,et al.  A note on the Gustafson-Kessel and adaptive fuzzy clustering algorithms , 1999, IEEE Trans. Fuzzy Syst..

[23]  Rajesh N. Davé,et al.  Validating fuzzy partitions obtained through c-shells clustering , 1996, Pattern Recognit. Lett..

[24]  M. Roubens Pattern classification problems and fuzzy sets , 1978 .

[25]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[26]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[27]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[28]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[29]  Jian Yu,et al.  Optimality test for generalized FCM and its application to parameter selection , 2005, IEEE Transactions on Fuzzy Systems.