Extracting Straight Lines

This paper presents a new approach to the extraction of straight lines in intensity images. Pixels are grouped into line-support regions of similar gradient orientation, and then the structure of the associated intensity surface is used to determine the location and properties of the edge. The resulting regions and extracted edge parameters form a low-level representation of the intensity variations in the image that can be used for a variety of purposes. The algorithm appears to be more effective than previous techniques for two key reasons: 1) the gradient orientation (rather than gradient magnitude) is used as the initial organizing criterion prior to the extraction of straight lines, and 2) the global context of the intensity variations associated with a straight line is determined prior to any local decisions about participating edge elements.

[1]  Allen R. Hanson,et al.  Edge Relaxation and Boundary Continuity. , 1980 .

[2]  Ugo Montanari,et al.  On the optimal detection of curves in noisy pictures , 1971, CACM.

[3]  A. Rosenfeld A nonlinear edge detection technique , 1970 .

[4]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[5]  Robert M. Haralick,et al.  Ridges and valleys on digital images , 1983, Comput. Vis. Graph. Image Process..

[6]  Azriel Rosenfeld,et al.  An Application of Relaxation Labeling to Line and Curve Enhancement , 1977, IEEE Transactions on Computers.

[7]  R. Kohler Integrating non-semantic knowledge into image segmentation processes , 1983 .

[8]  Berthold K. P. Horn Understanding Image Intensities , 1977, Artif. Intell..

[9]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[10]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[11]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[12]  R. Haralick,et al.  A facet model for image data , 1981 .

[13]  Bir Bhanu,et al.  Segmentation of natural scenes , 1987, Pattern Recognit..

[14]  S. Levialdi,et al.  Finding the Edge , 1981 .

[15]  Allen R. Hanson,et al.  Processing Cones: A Computational Structure for Image Analysis. , 1981 .

[16]  Allen R. Hanson,et al.  Experiments in Schema-Driven Interpretation of a Natural Scene , 1981 .

[17]  Martin A. Fischler,et al.  Linear delineation , 1987 .

[18]  Allen R. Hanson,et al.  Preprocessing Cones: A Computational Structure for Scene Analysis. , 1974 .

[19]  J. Canny Finding Edges and Lines in Images , 1983 .

[20]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[21]  Azriel Rosenfeld,et al.  Using pyramids to detect good continuation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.