A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements

Purpose – The purpose of this paper is to propose an efficient low-order quadrilateral flat shell element that possesses all outstanding advantages of novel shape-free plate bending and plane membrane elements proposed recently. Design/methodology/approach – By assembling a shape-free quadrilateral hybrid displacement-function (HDF) plate bending element HDF-P4-11s (Cen et al., 2014) and a shape-free quadrilateral hybrid stress-function (HSF) plane membrane element HSF-Q4-7s (Cen et al., 2011b) with drilling degrees of freedom (DOF), a new 4-node, 24-DOF (six DOFs per node) quadrilateral flat shell element is successfully constructed. The trial functions for resultant/stress fields within the element are derived from the analytical solutions of displacement and stress functions for plate bending and plane problems, respectively, so that they can a priori satisfy the related governing equations. Furthermore, in order to take the influences of moderately warping geometry into consideration, the rigid link c...

[1]  T. Belytschko,et al.  Physical stabilization of the 4-node shell element with one point quadrature , 1994 .

[2]  Robert D. Cook,et al.  Further development of a three‐node triangular shell element , 1993 .

[3]  Stefanie Reese,et al.  A reduced integration solid‐shell finite element based on the EAS and the ANS concept—Geometrically linear problems , 2009 .

[4]  Alexander G Iosilevich,et al.  An evaluation of the MITC shell elements , 2000 .

[5]  Nielen Stander,et al.  An efficient 4‐node 24 D.O.F. thick shell finite element with 5‐point quadrature , 1995 .

[6]  Song Cen,et al.  8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes , 2011 .

[7]  Robert L. Harder,et al.  The treatment of shell normals in finite element analysis , 1998 .

[8]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[9]  F. Gruttmann,et al.  A linear quadrilateral shell element with fast stiffness computation , 2005 .

[10]  Song Cen,et al.  Application of the quadrilateral area co‐ordinate method: a new element for Mindlin–Reissner plate , 2006 .

[11]  Hui-Ping Wang,et al.  An enhanced cell‐based smoothed finite element method for the analysis of Reissner–Mindlin plate bending problems involving distorted mesh , 2013 .

[12]  Song Cen,et al.  An effective hybrid displacement function element method for solving the edge effect of Mindlin–Reissner plate , 2015 .

[13]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[14]  Robert Levy,et al.  Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element , 2006 .

[15]  Song Cen,et al.  Hybrid displacement function element method: a simple hybrid‐Trefftz stress element method for analysis of Mindlin–Reissner plate , 2014 .

[16]  R. Moreira,et al.  A non-conforming plate facet-shell finite element with drilling stiffness , 2011 .

[17]  Phill-Seung Lee,et al.  Defect-free 4-node flat shell element: NMS-4F element , 1999 .

[18]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[19]  Abdur Razzaque,et al.  Program for triangular bending elements with derivative smoothing , 1973 .

[20]  D. Allman A compatible triangular element including vertex rotations for plane elasticity analysis , 1984 .

[21]  Song Cen,et al.  Advanced Finite Element Method in Structural Engineering , 2009 .

[22]  Edward L. Wilson,et al.  A unified formulation for triangular and quadrilateral flat shell finite elements with six nodal degrees of freedom , 1991 .

[23]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[24]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[25]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[26]  H. Parisch,et al.  An investigation of a finite rotation four node assumed strain shell element , 1991 .

[27]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[28]  Song Cen,et al.  Shape-Free Finite Element Method: Another Way between Mesh and Mesh-Free Methods , 2013 .

[29]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[30]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[31]  Guangyao Li,et al.  Analysis of plates and shells using an edge-based smoothed finite element method , 2009 .

[32]  K. Bathe,et al.  Development of MITC isotropic triangular shell finite elements , 2004 .

[33]  Song Cen,et al.  A new twelve DOF quadrilateral element for analysis of thick and thin plates , 2001 .

[34]  Nam Mai-Duy,et al.  An Improved Quadrilateral Flat Element with Drilling Degrees of Freedom for Shell Structural Analysis , 2009 .

[35]  Ping Hu,et al.  Review: A 4-node quasi-conforming Reissner-Mindlin shell element by using Timoshenko's beam function , 2012 .

[36]  Chenfeng Li,et al.  Two generalized conforming quadrilateral Mindlin–Reissner plate elements based on the displacement function , 2015 .

[37]  Brian L. Kemp,et al.  A four‐node solid shell element formulation with assumed strain , 1998 .

[38]  Yuqiu Long,et al.  Generalized conforming triangular membrane element with vertex rigid rotational freedoms , 1994 .

[39]  Song Cen,et al.  A new nine DOF triangular element for analysis of thick and thin plates , 1999 .

[40]  Song Cen,et al.  A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions , 2011 .

[41]  George Z. Voyiadjis,et al.  A 4‐node assumed strain quasi‐conforming shell element with 6 degrees of freedom , 2003 .

[42]  H. Nguyen-Xuan,et al.  A smoothed finite element method for plate analysis , 2008 .

[43]  Chen Wanji,et al.  Refined discrete quadrilateral degenerated shell element by using Timoshenko's beam function , 2005 .

[44]  Byung Chai Lee,et al.  Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom , 2014 .

[45]  Hai-chʿang Hu,et al.  Variational Principles of Theory of Elasticity with Applications , 1984 .

[46]  Frédéric Barlat,et al.  Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy , 2002 .

[47]  Song Cen,et al.  Analytical trial function method for development of new 8‐node plane element based on the variational principle containing Airy stress function , 2010 .

[48]  Irwan Katili,et al.  A new discrete Kirchhoff-Mindlin element based on Mindlin–Reissner plate theory and assumed shear strain fields—part II: An extended DKQ element for thick-plate bending analysis , 1993 .

[49]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[50]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[51]  N. F. Knight,et al.  Raasch Challenge for Shell Elements , 1997 .

[52]  Song Cen,et al.  Developments of Mindlin-Reissner Plate Elements , 2015 .