Diffusion Filters and Wavelets: What Can They Learn from Each Other?

Nonlinear diffusion filtering and wavelet shrinkage are two methods that serve the same purpose, namely discontinuity-preserving denoising. In this chapter we give a survey on relations between both paradigms when space-discrete or fully discrete versions of nonlinear diffusion filters are considered. For the case of space-discrete diffusion, we show equivalence between soft Haar wavelet shrinkage and total variation (TV) diffusion for 2-pixel signals. For the general case of N-pixel signals, this leads us to a numerical scheme for TV diffusion with many favourable properties. Both considerations are then extended to 2-D images, where an analytical solution for 2 × 2 pixel images serves as building block for a wavelet-inspired numerical scheme for TV diffusion. When replacing space-discrete diffusion by fully discrete one with an explicit time discretisation, we obtain a general relation between the shrinkage function of a shift-invariant Haar wavelet shrinkage on a single scale and the diffusivity of a nonlinear diffusion filter. This allows to study novel, diffusion-inspired shrinkage functions with competitive performance, to suggest now shrinkage rules for 2-D images with better rotation invariance, and to propose coupled shrinkage rules for colour images where a desynchronisation of the colour channels is avoided. Finally we present a new result which shows that one is not restricted to shrinkage with Haar wavelets: By using wavelets with a higher number of vanishing moments, equivalences to higher-order diffusion-like PDEs are discovered.

[1]  Dirk A. Lorenz,et al.  A partial differential equation for continuous nonlinear shrinkage filtering and its application for analyzing MMG data , 2004, SPIE Optics East.

[2]  F. Scherbaum,et al.  Modeling of Wave Dispersion Using Continuous Wavelet Transforms , 2005 .

[3]  J. Timmer,et al.  Fitting parameters in partial differential equations from partially observed noisy data , 2002 .

[4]  R. Ramlau,et al.  Regularization of Mellin-type inverse problems with an application to oil engineering☆ , 2004 .

[5]  Dirk Kohler,et al.  A comparison of denoising methods for one dimensional time series , 2005 .

[6]  D. Lorenz Variational Denoising in Besov Spaces and Interpolation of Hard and Soft Wavelet Shrinkage , 2003 .

[7]  G. Winkler,et al.  An Elementary Rigorous Introduction to Exact Sampling , 2005 .

[8]  Til Aach,et al.  Estimation of multiple orientations in multidimensional signals , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[9]  H. Kantz,et al.  FREQUENCY DOMAIN CONDITIONS FOR THE EXISTENCE OF ALMOST PERIODIC SOLUTIONS IN EVOLUTIONARY VARIATIONAL INEQUALITIES , 2004 .

[10]  Til Aach,et al.  Estimation of multiple motions: regularization and performance evaluation , 2003, IS&T/SPIE Electronic Imaging.

[11]  Til Aach,et al.  Linear and regularized solutions for multiple motions , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[12]  Michael E. Taylor,et al.  Propagation of singularities , 1991 .

[13]  H. Voss,et al.  Parameter estimation in nonlinear delayed feedback systems from noisy data , 2002 .

[14]  Joachim Weickert,et al.  On Iterations and Scales of Nonlinear Filters , 2003 .

[15]  Ronald R. Coifman,et al.  New Methods of Controlled Total Variation Reduction for Digital Functions , 2001, SIAM J. Numer. Anal..

[16]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[17]  Joachim Weickert,et al.  Diffusion-Inspired Shrinkage Functions and Stability Results for Wavelet Denoising , 2005, International Journal of Computer Vision.

[18]  Jürgen Kurths,et al.  Surrogate-Based Hypothesis Test without Surrogates , 2004, Int. J. Bifurc. Chaos.

[19]  E. Barth,et al.  Multiple-Motion-Estimation by Block-matching Using Markov Random Fields , 2004, ACIS Int. J. Comput. Inf. Sci..

[20]  D. Donoho,et al.  Translation-Invariant DeNoising , 1995 .

[21]  Gabriele Steidl,et al.  Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere , 2004, Adv. Comput. Math..

[22]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[23]  D. Lorenz,et al.  Solving variational problems in image processing via projections – a common view on TV denoising and wavelet shrinkage , 2007 .

[24]  J. Timmer,et al.  Data-driven optimal filtering for phase and frequency of noisy oscillations: Application to vortex flow metering. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Ursula Klingmüller,et al.  Modeling the Nonlinear Dynamics of Cellular Signal Transduction , 2004, Int. J. Bifurc. Chaos.

[26]  Til Aach,et al.  Estimation of multiple local orientations in image signals , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Jesús Ildefonso Díaz Díaz,et al.  Some qualitative properties for the total variation flow , 2002 .

[28]  J. Franke,et al.  Bernstein inequality for strongly mixing spatial random processes , 2005 .

[29]  G. Winkler,et al.  Parsimonious segmentation of time series by Potts models , 2005 .

[30]  Til Aach,et al.  Estimation of Multiple Orientations at Corners and Junctions , 2004, DAGM-Symposium.

[31]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[32]  Karsten Koch Interpolating Scaling Vectors , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[33]  Hanno Scharr,et al.  Towards a Multi-camera Generalization of Brightness Constancy , 2004, IWCM.

[34]  G. Winkler,et al.  Numerical solution of boundary value problems for stochastic differential equations on the basis of the Gibbs sampler , 2003 .

[35]  Hamid Krim,et al.  Towards Bridging Scale-Space and Multiscale Frame Analyses , 2001 .

[36]  Andreas Martin,et al.  Exact and fast numerical algorithms for the stochastic wave equation , 2003, Int. J. Comput. Math..

[37]  U. Clarenz,et al.  Towards fast non-rigid registration , 2003 .

[38]  P. Mrázek,et al.  ON ROBUST ESTIMATION AND SMOOTHING WITH SPATIAL AND TONAL KERNELS , 2006 .

[39]  Joachim Weickert,et al.  Correspondences between Wavelet Shrinkage and Nonlinear Diffusion , 2003, Scale-Space.

[40]  H. Thielemann Bounds for smoothness of refinable functions , 2004 .

[41]  W. Panzer,et al.  An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography. , 2003, Physics in medicine and biology.

[42]  Erich Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings I , 2006, J. Complex..

[43]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[45]  S. Mallat A wavelet tour of signal processing , 1998 .

[46]  U. Parlitz,et al.  Mathematical methods for forecasting bank transaction data , 2003 .

[47]  M. Rumpf,et al.  Morphological image sequence processing , 2004 .

[48]  R. Dahlhaus,et al.  Statistical inference for time-varying ARCH processes , 2006, math/0607799.

[49]  Jens Timmer,et al.  Direct or indirect? Graphical models for neural oscillators , 2004, Journal of Physiology-Paris.

[50]  H. Voss,et al.  Phase synchronization from noisy univariate signals. , 2004, Physical review letters.

[51]  G. Steidl,et al.  Robust local approximation of scattered data , 2006 .

[52]  Joachim Weickert,et al.  A Four-Pixel Scheme for Singular Differential Equations , 2005, Scale-Space.

[53]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[54]  B. Øksendal,et al.  Small Ball Asymptotics for the Stochastic Wave Equation ∗ , 2003 .

[55]  Henning Thielemann Audio Processing using Haskell , 2004 .

[56]  G. Teschke,et al.  Regularization of Sobolev Embedding Operators and Applications Part II , 2004 .

[57]  Frank Scherbaum,et al.  Instantaneous polarization attributes in the time–frequency domain and wavefield separation , 2005 .

[58]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[59]  Antonin Chambolle,et al.  Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space , 2001, IEEE Trans. Image Process..

[60]  Karsten Keller,et al.  Symbolic Analysis of High-Dimensional Time Series , 2003, Int. J. Bifurc. Chaos.

[61]  FRANÇOISE DIBOS,et al.  Global Total Variation Minimization , 1999, SIAM J. Numer. Anal..

[62]  A. Schulze-Bonhage,et al.  Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic , 2004 .

[63]  F. Scherbaum,et al.  Characterization of dispersive surface waves using continuous wavelet transforms , 2005 .

[64]  Hanno Scharr,et al.  Optimal Filters for Extended Optical Flow , 2004, IWCM.

[65]  Joachim Weickert,et al.  Rotationally Invariant Wavelet Shrinkage , 2003, DAGM-Symposium.

[66]  Erhardt Barth,et al.  Categorization of Transparent-Motion Patterns Using the Projective Plane , 2003, SNPD.

[67]  Karsten Koch Interpolating Scaling Vectors: Application to Signal and Image Denoising , 2004 .

[68]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[69]  J. Polzehl,et al.  Local likelihood modeling by adaptive weights smoothing , 2004 .

[70]  J. Timmer,et al.  Asymptotic scaling laws for precision of parameter estimates in dynamical systems , 2003 .

[71]  Til Aach,et al.  Spatial and spectral analysis of occluded motions , 2005, Signal Process. Image Commun..

[72]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[73]  K. Bredies,et al.  Mathematical concepts of multiscale smoothing , 2005 .

[74]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[75]  G. Winkler,et al.  Exact numerical algorithms for linear stochastic wave equation and stochastic Klein-Gordon equation , 2003 .

[76]  Jens Timmer,et al.  Identification of Rate Constants and nonobservable Absorption Spectra in Nonlinear Biochemical Reaction Dynamics , 2004, Int. J. Bifurc. Chaos.

[77]  J. Kurths,et al.  Sensitivity and specificity of coherence and phase synchronization analysis , 2006 .

[78]  H. Voss,et al.  Non-parametric identification of non-linear oscillating systems , 2003 .

[79]  E. Barth,et al.  Analysing superimposed oriented patterns , 2004, 6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004..