Precursor evaluation for in situ InP nanowire doping

The use of tetraethyltin (TESn) and dimethylzinc (DMZn) as in situ n- and p-dopant precursors during particle-assisted growth of InP nanowires is reported. Gate voltage dependent transport measurements demonstrate that the nanowires can be predictably synthesized as either n- or p-type. These doped nanowires can be characterized based on their electric field response and we find that n-type doping scales over a range from 10(17) to 10(19) cm(-3) with increasing input TESn dopant molar fraction. On the other hand, the p-type doping using DMZn saturates at low levels, probably related to a strong increase in nanowire growth rate with increasing DMZn molar fractions. By optimizing growth conditions with respect to tapering, axial pn-junctions exhibiting rectifying behavior were fabricated. The pn-junctions can be operated as light emitting diodes.

[1]  M. Koguchi,et al.  Heteroepitaxial ultrafine wire‐like growth of InAs on GaAs substrates , 1991 .

[2]  Surface chemistry and electrical properties of germanium nanowires. , 2004, Journal of the American Chemical Society.

[3]  A. W. Nelson,et al.  Effect of cooling ambient on electrical activation of dopants in MOVPE of InP , 1988 .

[4]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[5]  R. Bhat,et al.  Organometallic Vapor Phase Epitaxy , 1992 .

[6]  J. Wu,et al.  Gate coupling and charge distribution in nanowire field effect transistors. , 2007, Nano letters.

[7]  R. D. Dupuis,et al.  Heavily‐doped n‐type InP and InGaAs grown by metalorganic chemical vapor deposition using tetraethyltin , 1990 .

[8]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[9]  L. Samuelson,et al.  Size-selected gold nanoparticles by aerosol technology , 1999 .

[10]  Single-electron tunneling in InP nanowires , 2003, cond-mat/0302517.

[11]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[12]  M. Reed,et al.  The effect of Mg doping on GaN nanowires , 2006 .

[13]  O. Wunnicke,et al.  Gate capacitance of back-gated nanowire field-effect transistors , 2006 .

[14]  Lars-Erik Wernersson,et al.  Vertical wrap-gated nanowire transistors , 2006 .

[15]  E. Bakkers,et al.  Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning , 2006 .

[16]  Yu Huang,et al.  Nanowires for integrated multicolor nanophotonics. , 2004, Small.

[17]  E. Bakkers,et al.  Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.

[18]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[19]  V. Zwiller,et al.  Single quantum dot nanowire LEDs. , 2007, Nano letters.

[20]  L. Samuelson,et al.  Electrical and optical properties of deep levels in MOVPE grown GaAs , 1981 .

[21]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[22]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[23]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[24]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[25]  E. Bakkers,et al.  Epitaxial Growth of III-V Nanowires on Group IV Substrates , 2007 .

[26]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[27]  D. N. Bose Properties, processing and applications of indium phosphide , 2001 .

[28]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.