Large Deviations and Importance Sampling for Systems of Slow-Fast Motion

[1]  Konstantinos Spiliopoulos,et al.  Importance Sampling for Multiscale Diffusions , 2011, Multiscale Model. Simul..

[2]  Jean-Pierre Fouque,et al.  SMALL-TIME ASYMPTOTICS FOR FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS , 2010, 1009.2782.

[3]  Konstantinos Spiliopoulos,et al.  Rare event simulation for rough energy landscapes , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[4]  H. Kushner Large Deviations for Two-Time-Scale Diffusions, with Delays , 2010 .

[5]  Fabio Camilli,et al.  Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs , 2009 .

[6]  Pulak Kumar Ghosh,et al.  Noise-induced transport in a rough ratchet potential. , 2009, The Journal of chemical physics.

[7]  S. Sheu,et al.  Ergodic Type Bellman Equations of First Order with Quadratic Hamiltonian , 2009 .

[8]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[9]  Vivek S. Borkar,et al.  Averaging of Singularly Perturbed Controlled Stochastic Differential Equations , 2007 .

[10]  Paul Dupuis,et al.  Subsolutions of an Isaacs Equation and Efficient Schemes for Importance Sampling , 2005, Math. Oper. Res..

[11]  S. Sheu,et al.  ON THE STRUCTURE OF SOLUTIONS OF ERGODIC TYPE BELLMAN EQUATION RELATED TO RISK-SENSITIVE CONTROL , 2006, math/0602625.

[12]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[13]  Panagiotis E. Souganidis,et al.  Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications , 2005 .

[14]  Adam M. Oberman,et al.  Computing the Effective Hamiltonian using a Variational Approach , 2004, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Rainer Buckdahn,et al.  Limit Theorem for Controlled Backward SDEs and Homogenization of Hamilton–Jacobi–Bellman Equations , 2005 .

[16]  Simultaneous Effects of Homogenization and Vanishing Viscosity in Fully Nonlinear Elliptic Equations , 2003 .

[17]  A. Veretennikov,et al.  © Institute of Mathematical Statistics, 2003 ON POISSON EQUATION AND DIFFUSION APPROXIMATION 2 1 , 2022 .

[18]  Martino Bardi,et al.  Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..

[19]  A. Veretennikov On large deviations for SDEs with small diffusion and averaging , 2000 .

[20]  Richard B. Sowers,et al.  A comparison of homogenization and large deviations, with applications to wavefront propagation , 1999 .

[21]  A. Veretennikov,et al.  On Large Deviations in the Averaging Principle for SDEs with a “Full Dependence” , 1999 .

[22]  P. Dupuis,et al.  A variational representation for certain functionals of Brownian motion , 1998 .

[23]  P. Lions,et al.  ON ERGODIC STOCHASTIC CONTROL , 1998 .

[24]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[25]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[26]  R. Liptser,et al.  Large deviations for two scaled diffusions , 1996, math/0510029.

[27]  Jeffery G. Saven,et al.  Kinetics of protein folding: The dynamics of globally connected rough energy landscapes with biases , 1994 .

[28]  A. Bensoussan,et al.  On Bellman equations of ergodic control in Rn , 1992 .

[29]  Paolo Baldi,et al.  Large deviations for diffusion processes with homogenization and applications , 1991 .

[30]  H. Kushner Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems , 1990 .

[31]  R. Zwanzig,et al.  Diffusion in a rough potential. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[33]  J. L. Jackson,et al.  On the Self‐Diffusion of Ions in a Polyelectrolyte Solution , 1962 .