Modus operandi of the bacterial RNA polymerase containing the σ54 promoter‐specificity factor

Bacterial sigma (σ) factors confer gene specificity upon the RNA polymerase, the central enzyme that catalyses gene transcription. The binding of the alternative σ factor σ54 confers upon the RNA polymerase special functional and regulatory properties, making it suited for control of several major adaptive responses. Here, we summarize our current understanding of the interactions the σ54 factor makes with the bacterial transcription machinery.

[1]  A. Kolb,et al.  Protein‐induced DNA bending clarifies the architectural organization of the σ54‐dependent glnAp2 promoter , 2006, Molecular microbiology.

[2]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[3]  M. Buck,et al.  DNA distortion and nucleation of local DNA unwinding within sigma-54 (sigma N) holoenzyme closed promoter complexes. , 1994, The Journal of biological chemistry.

[4]  M. Buck,et al.  The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: Identifying a surface that binds σ54 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Elderkin,et al.  Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. , 2001, Genes & development.

[6]  M. Buck,et al.  Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. , 2006, Journal of structural biology.

[7]  K. Severinov,et al.  A Role for Interaction of the RNA Polymerase Flap Domain with the σ Subunit in Promoter Recognition , 2002, Science.

[8]  Martin Buck,et al.  Mapping ATP-dependent activation at a sigma54 promoter. , 2006, The Journal of biological chemistry.

[9]  M. Buck,et al.  Systematic analysis of sigma54 N-terminal sequences identifies regions involved in positive and negative regulation of transcription. , 1999, Journal of molecular biology.

[10]  C. Gross,et al.  Multiple sigma subunits and the partitioning of bacterial transcription space. , 2003, Annual review of microbiology.

[11]  A. Ishihama,et al.  Targeted protein footprinting: where different transcription factors bind to RNA polymerase. , 1999, Biochemistry.

[12]  M. Buck,et al.  The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. , 2000, FEMS microbiology letters.

[13]  Steven Hahn,et al.  Transcriptional regulation Meeting on Regulatory Mechanisms in Eukaryotic Transcription , 2008 .

[14]  L. Reitzer,et al.  Metabolic Context and Possible Physiological Themes of ς54-Dependent Genes in Escherichia coli , 2001, Microbiology and Molecular Biology Reviews.

[15]  C. Gross,et al.  The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. , 1999, Genes & development.

[16]  R. Finn,et al.  The second paradigm for activation of transcription. , 2005, Progress in nucleic acid research and molecular biology.

[17]  Saul Tzipori,et al.  Biology of , 2021, Evolutionary Biology of Carabus Ground Beetles.

[18]  J. Gralla,et al.  Multiple In Vivo Roles for the −12-Region Elements of Sigma 54 Promoters , 1998, Journal of bacteriology.

[19]  Jonathan T. Wang,et al.  Converting Escherichia coli RNA Polymerase into an Enhancer-Responsive Enzyme: Role of an NH2-Terminal Leucine Patch in σ54 , 1995, Science.

[20]  K. Severinov,et al.  Interplay between the β′ Clamp and the β′ Jaw Domains during DNA Opening by the Bacterial RNA Polymerase at σ54-dependent Promoters , 2006 .

[21]  K. Severinov,et al.  Stable DNA Opening within Open Promoter Complexes Is Mediated by the RNA Polymerase β′-Jaw Domain* , 2005, Journal of Biological Chemistry.

[22]  D. Reinberg,et al.  Mechanism of ATP-dependent promoter melting by transcription factor IIH. , 2000, Science.

[23]  N. Fujita,et al.  Conservation of sigma–core RNA polymerase proximity relationships between the enhancer‐independent and enhancer‐dependent sigma classes , 2000, The EMBO journal.

[24]  S. Nechaev,et al.  Regulated communication between the upstream face of RNA polymerase and the β′ subunit jaw domain , 2004, The EMBO journal.

[25]  G. Volckaert,et al.  The Genome and Structural Proteome of YuA, a New Pseudomonas aeruginosa Phage Resembling M6 , 2007, Journal of bacteriology.

[26]  M. Buck,et al.  Region I modifies DNA-binding domain conformation of sigma 54 within the holoenzyme. , 1999, Journal of molecular biology.

[27]  S. Sasse-Dwight,et al.  Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor σ 54 , 1990, Cell.

[28]  M. Buck,et al.  The sigma 54 DNA‐binding domain includes a determinant of enhancer responsiveness , 1999, Molecular microbiology.

[29]  M. Buck,et al.  Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation. , 2008, Journal of molecular biology.

[30]  T. Hoover,et al.  Transcriptional regulation at a distance in bacteria. , 2001, Current opinion in microbiology.

[31]  L. Isaksson,et al.  The Downstream DNA Jaw of Bacterial RNA Polymerase Facilitates Both Transcriptional Initiation and Pausing* , 2002, The Journal of Biological Chemistry.

[32]  John D. Helmann,et al.  Protein family review - The sigma(70) family of sigma factors , 2003 .

[33]  Martin Buck,et al.  Specific binding of the transcription factor sigma-54 to promoter DNA , 1992, Nature.

[34]  M. Buck,et al.  Mechanochemical ATPases and transcriptional activation , 2002, Molecular microbiology.

[35]  J. Gralla,et al.  Promoter opening by sigma(54) and sigma(70) RNA polymerases: sigma factor-directed alterations in the mechanism and tightness of control. , 2000, Genes & development.

[36]  David J. Studholme,et al.  The Bacterial Enhancer-Dependent ς54(ςN) Transcription Factor , 2000, Journal of bacteriology.

[37]  M. Buck,et al.  Isomerization of a binary sigma–promoter DNA complex by transcription activators , 2000, Nature Structural Biology.

[38]  C. Robinson,et al.  Structural Insights into the Activity of Enhancer-Binding Proteins , 2005, Science.

[39]  K. Severinov,et al.  Multiple roles of the RNA polymerase beta subunit flap domain in sigma 54-dependent transcription. , 2003, The Journal of biological chemistry.

[40]  Konstantin Severinov,et al.  Reorganisation of an RNA polymerase–promoter DNA complex for DNA melting , 2004, The EMBO journal.

[41]  R. Finn,et al.  Conformational changes of Escherichia coli sigma54-RNA-polymerase upon closed-promoter complex formation. , 2005, Journal of Molecular Biology.

[42]  M. Buck,et al.  Sequences in sigmaN determining holoenzyme formation and properties. , 1999, Journal of molecular biology.

[43]  S. Busby,et al.  The regulation of bacterial transcription initiation , 2004, Nature Reviews Microbiology.

[44]  J. Gralla,et al.  TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape , 2005, Nature Structural &Molecular Biology.

[45]  M. Buck,et al.  Coupling nucleotide hydrolysis to transcription activation performance in a bacterial enhancer binding protein , 2007, Molecular microbiology.

[46]  J. Helmann,et al.  The σ70family of sigma factors , 2003, Genome Biology.

[47]  S. Nechaev,et al.  Inhibition of Escherichia coli RNA polymerase by bacteriophage T7 gene 2 protein. , 1999, Journal of molecular biology.

[48]  Xiaodong Zhang,et al.  Mechanisms of ATPases--a multi-disciplinary approach. , 2004, Current protein & peptide science.

[49]  R. Landick,et al.  Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase , 2007, Proceedings of the National Academy of Sciences.

[50]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[51]  K. Severinov,et al.  Interplay between the beta' clamp and the beta' jaw domains during DNA opening by the bacterial RNA polymerase at sigma54-dependent promoters. , 2006, Journal of molecular biology.

[52]  D. Wemmer,et al.  The C-Terminal RpoN Domain of sigma54 Forms an unpredicted Helix-Turn-Helix Motif Similar to domains of sigma70 , 2005 .

[53]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[54]  L. Reitzer,et al.  Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. , 2001, Microbiology and molecular biology reviews : MMBR.

[55]  P. Stockley,et al.  Mapping ATP-dependent Activation at a σ54 Promoter* , 2006, Journal of Biological Chemistry.

[56]  D. Svergun,et al.  Low Resolution Structure of the ς54 Transcription Factor Revealed by X-ray Solution Scattering* , 2000, The Journal of Biological Chemistry.

[57]  A. Ishihama,et al.  Regulatory sequences in sigma 54 localise near the start of DNA melting. , 2001, Journal of molecular biology.

[58]  B. Coulombe,et al.  Structural Perspective on Mutations Affecting the Function of Multisubunit RNA Polymerases , 2006, Microbiology and Molecular Biology Reviews.

[59]  M. Record,et al.  Quantitative analysis of multiple-hit footprinting studies to characterize DNA conformational changes in protein-DNA complexes: application to DNA opening by Esigma70 RNA polymerase. , 1998, Journal of molecular biology.

[60]  M. Buckle,et al.  Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Todd G. Smith,et al.  Look, no hands! Unconventional transcriptional activators in bacteria. , 2007, Trends in microbiology.

[62]  R. Gourse,et al.  RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. , 1998, Journal of molecular biology.