Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases

[1]  C. Dinarello,et al.  The Significance of IL-36 Hyperactivation and IL-36R Targeting in Psoriasis , 2019, International journal of molecular sciences.

[2]  J. Wenzel,et al.  Interleukin-36 in Infectious and Inflammatory Skin Diseases , 2019, Front. Immunol..

[3]  F. Ciccarelli,et al.  An analysis of IL-36 signature genes and individuals with IL1RL2 knockout mutations validates IL-36 as a psoriasis therapeutic target , 2017, Science Translational Medicine.

[4]  D. Mennerich,et al.  Generation and functional characterization of anti-human and anti-mouse IL-36R antagonist monoclonal antibodies , 2017, mAbs.

[5]  Seamus J. Martin,et al.  Neutrophil extracellular traps can serve as platforms for processing and activation of IL‐1 family cytokines , 2017, The FEBS journal.

[6]  A. Alase,et al.  Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36γ , 2017, Proceedings of the National Academy of Sciences.

[7]  D. Craik,et al.  Design of Potent and Selective Cathepsin G Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold. , 2017, Journal of medicinal chemistry.

[8]  B. Deplancke,et al.  PDF Signaling Is an Integral Part of the Drosophila Circadian Molecular Oscillator , 2016, Cell reports.

[9]  D. Jarrossay,et al.  Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines. , 2016, Cytokine.

[10]  Seamus J. Martin Cell death and inflammation: the case for IL‐1 family cytokines as the canonical DAMPs of the immune system , 2016, The FEBS journal.

[11]  A. Alase,et al.  Neutrophil Elastase-mediated proteolysis activates the anti-inflammatory cytokine IL-36 Receptor antagonist , 2016, Scientific Reports.

[12]  Seamus J. Martin,et al.  Production of biologically active IL‐36 family cytokines through insertion of N‐terminal caspase cleavage motifs , 2016, FEBS open bio.

[13]  Seamus J. Martin,et al.  Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines. , 2016, Cell reports.

[14]  A. Menter,et al.  A Review of Biologic Therapies Targeting IL-23 and IL-17 for Use in Moderate-to-Severe Plaque Psoriasis , 2015, Dermatology and Therapy.

[15]  M. Lebwohl,et al.  Risk of Serious Infection With Biologic and Systemic Treatment of Psoriasis: Results From the Psoriasis Longitudinal Assessment and Registry (PSOLAR). , 2015, JAMA dermatology.

[16]  T. Hwang,et al.  Neutrophil elastase inhibitors: a patent review and potential applications for inflammatory lung diseases (2010 – 2014) , 2015, Expert opinion on therapeutic patents.

[17]  J. Koo,et al.  Evidence-based adverse effects of biologic agents in the treatment of moderate-to-severe psoriasis: Providing clarity to an opaque topic , 2015, The Journal of dermatological treatment.

[18]  A. Lesner,et al.  Inhibitors of cathepsin G: a patent review (2005 to present) , 2013, Expert opinion on therapeutic patents.

[19]  Carol S. Lim,et al.  Basics and recent advances in peptide and protein drug delivery. , 2013, Therapeutic delivery.

[20]  F. Furukawa,et al.  Novel IL36RN mutation in a Japanese case of early onset generalized pustular psoriasis , 2013, The Journal of dermatology.

[21]  Hidetoshi Takahashi,et al.  Therapeutic depletion of myeloid lineage leukocytes in patients with generalized pustular psoriasis indicates a major role for neutrophils in the immunopathogenesis of psoriasis. , 2013, Journal of the American Academy of Dermatology.

[22]  J. Gudjonsson,et al.  Keratinocyte Overexpression of IL-17C Promotes Psoriasiform Skin Inflammation , 2013, The Journal of Immunology.

[23]  P. Kubes,et al.  Neutrophil recruitment and function in health and inflammation , 2013, Nature Reviews Immunology.

[24]  H. Nakai,et al.  Mutation Analysis of the IL36RN Gene in 14 Japanese Patients with Generalized Pustular Psoriasis , 2013, Human mutation.

[25]  A. Derer,et al.  The novel cytokine interleukin-36α is expressed in psoriatic and rheumatoid arthritis synovium , 2012, Annals of the rheumatic diseases.

[26]  S. Werner,et al.  Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. , 2012, The Journal of clinical investigation.

[27]  F. Sallusto,et al.  IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+ T cells. , 2012, Blood.

[28]  T. Kanneganti,et al.  IL-1 family cytokines trigger sterile inflammatory disease , 2012, Front. Immun..

[29]  J. Sims,et al.  IL-36 in psoriasis. , 2012, Current opinion in pharmacology.

[30]  Jeung-Hoon Lee,et al.  Changes in Transepidermal Water Loss and Skin Hydration according to Expression of Aquaporin-3 in Psoriasis , 2012, Annals of dermatology.

[31]  A. Zychlinsky,et al.  Neutrophil function: from mechanisms to disease. , 2012, Annual review of immunology.

[32]  N. Arsenijević,et al.  IL-33/ST2 axis in inflammation and immunopathology , 2012, Immunologic research.

[33]  B. Monsarrat,et al.  IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G , 2012, Proceedings of the National Academy of Sciences.

[34]  Yijun Carrier,et al.  Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. , 2011, The Journal of investigative dermatology.

[35]  H. Dinh,et al.  IL-36R ligands are potent regulators of dendritic and T cells. , 2011, Blood.

[36]  S. Cullen,et al.  Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α. , 2011, Molecular cell.

[37]  A. Churg,et al.  AZD9668: Pharmacological Characterization of a Novel Oral Inhibitor of Neutrophil Elastase , 2011, Journal of Pharmacology and Experimental Therapeutics.

[38]  C. Gabel,et al.  Interleukin-36 (IL-36) Ligands Require Processing for Full Agonist (IL-36α, IL-36β, and IL-36γ) or Antagonist (IL-36Ra) Activity , 2011, The Journal of Biological Chemistry.

[39]  M. Simpson,et al.  Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. , 2011, American journal of human genetics.

[40]  A. Smahi,et al.  Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. , 2011, The New England journal of medicine.

[41]  Seamus J. Martin,et al.  Caspase-1 Promiscuity Is Counterbalanced by Rapid Inactivation of Processed Enzyme* , 2011, The Journal of Biological Chemistry.

[42]  G. Guyatt,et al.  Adverse effects of biologics: a network meta-analysis and Cochrane overview. , 2011, The Cochrane database of systematic reviews.

[43]  James T. Elder,et al.  IL-1F5, -F6, -F8, and -F9: A Novel IL-1 Family Signaling System That Is Active in Psoriasis and Promotes Keratinocyte Antimicrobial Peptide Expression , 2011, The Journal of Immunology.

[44]  M. Horwitz,et al.  Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases , 2010, Pharmacological Reviews.

[45]  H. Dinh,et al.  IL-1RL2 and Its Ligands Contribute to the Cytokine Network in Psoriasis , 2010, The Journal of Immunology.

[46]  Dirk E. Smith,et al.  The IL-1 family: regulators of immunity , 2010, Nature Reviews Immunology.

[47]  Frank O. Nestle,et al.  Mechanisms of Disease: Psoriasis. , 2009 .

[48]  C. Dinarello,et al.  Immunological and inflammatory functions of the interleukin-1 family. , 2009, Annual review of immunology.

[49]  K. Rock,et al.  How dying cells alert the immune system to danger , 2008, Nature Reviews Immunology.

[50]  M. Murphy,et al.  The histopathologic spectrum of psoriasis. , 2007, Clinics in dermatology.

[51]  H. Dinh,et al.  Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation , 2007, The Journal of experimental medicine.

[52]  N. Borregaard,et al.  Neutrophil granules: a library of innate immunity proteins. , 2007, Trends in immunology.

[53]  Christine T. N. Pham,et al.  Neutrophil serine proteases: specific regulators of inflammation , 2006, Nature Reviews Immunology.

[54]  J. Sims,et al.  Interleukin (IL)-1F6, IL-1F8, and IL-1F9 Signal through IL-1Rrp2 and IL-1RAcP to Activate the Pathway Leading to NF-κB and MAPKs* , 2004, Journal of Biological Chemistry.

[55]  A. Zychlinsky,et al.  Neutrophil Extracellular Traps Kill Bacteria , 2004, Science.

[56]  G. Siller,et al.  Psoriasis induced by topical imiquimod , 2004, Australasian Journal of Dermatology.

[57]  J. Repine,et al.  Neutrophil elastase and acute lung injury: Prospects for sivelestat and other neutrophil elastase inhibitors as therapeutics , 2002, Critical care medicine.

[58]  H. Tagami,et al.  Role of neutrophils in induction of acute inflammation in T‐cell‐mediated immune dermatosis, psoriasis: A neutrophil‐associated inflammation‐boosting loop , 2000, Experimental dermatology.

[59]  A. Schätzlein,et al.  TRANSDERMAL DRUG CARRIERS - BASIC PROPERTIES, OPTIMIZATION AND TRANSFER EFFICIENCY IN THE CASE OF EPICUTANEOUSLY APPLIED PEPTIDES , 1995 .

[60]  F. Wiese,et al.  Lesional elastase activity in psoriasis, contact dermatitis, and atopic dermatitis. , 1992, The Journal of investigative dermatology.

[61]  R. Crystal,et al.  Neutrophil accumulation in the lung in alpha 1-antitrypsin deficiency. Spontaneous release of leukotriene B4 by alveolar macrophages. , 1991, The Journal of clinical investigation.

[62]  D. Hazuda,et al.  Processing of precursor interleukin 1 beta and inflammatory disease. , 1990, The Journal of biological chemistry.

[63]  R. Crystal,et al.  Alpha 1-antitrypsin deficiency and emphysema caused by homozygous inheritance of non-expressing alpha 1-antitrypsin genes. , 1986, The New England journal of medicine.

[64]  C. Haslett,et al.  Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. , 1985, The American journal of pathology.

[65]  C. Allenby,et al.  Comparison of barrier function and lipids in psoriasis and essential fatty acid‐deficient rats , 1978, Clinical and experimental dermatology.

[66]  Mark Lebwohl,et al.  Psoriasis , 1906, The Lancet.

[67]  R. Crystal,et al.  Alpha 1-antitrypsin deficiency and emphysema caused by homozygous inheritance of non-expressing alpha 1-antitrypsin genes. , 1986, The New England journal of medicine.