Cytochrome P450 monooxygenases: an update on perspectives for synthetic application.

[1]  D. Nelson The Cytochrome P450 Homepage , 2009, Human Genomics.

[2]  R. Müller,et al.  Genome Mining in Sorangium cellulosum So ce56 , 2009, The Journal of Biological Chemistry.

[3]  H. Ikeda,et al.  Regio- and Stereospecificity of Filipin Hydroxylation Sites Revealed by Crystal Structures of Cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis* , 2010, The Journal of Biological Chemistry.

[4]  Heung-Chae Jung,et al.  ENGINEERING BACTERIAL CYTOCHROME P450 BM3 INTO A PROTOTYPE WITH HUMAN P450 ENZYME ACTIVITY USING INDIGO FORMATION , 2010 .

[5]  R. Bernhardt,et al.  Towards Preparative Scale Steroid Hydroxylation with Cytochrome P450 Monooxygenase CYP106A2 , 2010, Chembiochem : a European journal of chemical biology.

[6]  S. Kelly,et al.  Biosynthesis of the Sesquiterpene Antibiotic Albaflavenone in Streptomyces coelicolor A3(2)* , 2008, Journal of Biological Chemistry.

[7]  Vlada B Urlacher,et al.  Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes. , 2011, Chemical communications.

[8]  Matthias Dietrich,et al.  Cytochrome P450 monooxygenase from Clostridium acetobutylicum: a new alpha-fatty acid hydroxylase. , 2007, Biochemical and biophysical research communications.

[9]  E. Gillam Engineering cytochrome p450 enzymes. , 2008, Chemical research in toxicology.

[10]  V. Urlacher,et al.  Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system , 2009, Microbial cell factories.

[11]  F. Guengerich,et al.  Characterizing proteins of unknown function: orphan cytochrome p450 enzymes as a paradigm. , 2010, Molecular interventions.

[12]  Kersten S. Rabe,et al.  Engineering and assaying of cytochrome P450 biocatalysts , 2008, Analytical and bioanalytical chemistry.

[13]  S. Bell,et al.  Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris. , 2006, Biochemical and biophysical research communications.

[14]  F. Guengerich,et al.  Human cytochrome P450 4F11: heterologous expression in bacteria, purification, and characterization of catalytic function. , 2010, Archives of biochemistry and biophysics.

[15]  T. Imanaka,et al.  Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes , 2011, Journal of Industrial Microbiology & Biotechnology.

[16]  D. Nelson,et al.  Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish , 2010, BMC Genomics.

[17]  F. Arnold,et al.  Diversification of catalytic function in a synthetic family of chimeric cytochrome p450s. , 2007, Chemistry & biology.

[18]  N. Vermeulen,et al.  Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis. , 2007, Journal of medicinal chemistry.

[19]  J. Ishikawa,et al.  Hydroxylation of Testosterone by Bacterial Cytochromes P450 Using the Escherichia coli Expression System , 2006, Bioscience, biotechnology, and biochemistry.

[20]  N. Vermeulen,et al.  Application of drug metabolising mutants of cytochrome P450 BM3 (CYP102A1) as biocatalysts for the generation of reactive metabolites. , 2008, Chemico-biological interactions.

[21]  R. Lill,et al.  Parallel pathways for oxidation of 14‐membered polyketide macrolactones in Saccharopolyspora erythraea , 2002, Molecular microbiology.

[22]  Sabine Laschat,et al.  Rational Design of a Minimal and Highly Enriched CYP102A1 Mutant Library with Improved Regio‐, Stereo‐ and Chemoselectivity , 2009, Chembiochem : a European journal of chemical biology.

[23]  W. Soetaert,et al.  The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism , 2011, The FEBS journal.

[24]  L. Narhi,et al.  Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. , 1986, The Journal of biological chemistry.

[25]  H. Ikeda,et al.  Crystal Structures of Cytochrome P450 105P1 from Streptomyces avermitilis: Conformational Flexibility and Histidine Ligation State , 2008, Journal of bacteriology.

[26]  Colin J Jackson,et al.  The Cytochrome P450 Complement (CYPome) of Streptomyces coelicolor A3(2)* , 2002, The Journal of Biological Chemistry.

[27]  T. Friedberg,et al.  Establishment of functional human cytochrome P450 monooxygenase systems in Escherichia coli. , 2006, Methods in molecular biology.

[28]  R. Bernhardt,et al.  Cytochrome P450 systems--biological variations of electron transport chains. , 2007, Biochimica et biophysica acta.

[29]  Santosh Kumar Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation , 2010, Expert opinion on drug metabolism & toxicology.

[30]  D. Nelson,et al.  Progress in tracing the evolutionary paths of cytochrome P450. , 2011, Biochimica et biophysica acta.

[31]  Vlada B Urlacher,et al.  Cytochrome P450 monooxygenases: perspectives for synthetic application. , 2006, Trends in biotechnology.

[32]  T. Eguchi,et al.  Cloning and Characterization of the Biosynthetic Gene Cluster of 16‐Membered Macrolide Antibiotic FD‐891: Involvement of a Dual Functional Cytochrome P450 Monooxygenase Catalyzing Epoxidation and Hydroxylation , 2010, Chembiochem : a European journal of chemical biology.

[33]  V. Urlacher Catalysis with Cytochrome P450 Monooxygenases , 2010 .

[34]  J. Schrader,et al.  Improvement of P450BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli , 2008, Applied Microbiology and Biotechnology.

[35]  H. Sugimoto,et al.  Crystal structure of CYP105A1 (P450SU-1) in complex with 1alpha,25-dihydroxyvitamin D3. , 2008, Biochemistry.

[36]  K. Auclair,et al.  Progress towards the easier use of P450 enzymes. , 2006, Molecular bioSystems.

[37]  F Peter Guengerich,et al.  Exploiting Streptomyces coelicolor A3(2) P450s as a model for application in drug discovery , 2006, Expert opinion on drug metabolism & toxicology.

[38]  F Peter Guengerich,et al.  Complex reactions catalyzed by cytochrome P450 enzymes. , 2007, Biochimica et biophysica acta.

[39]  Michael Schroeder,et al.  SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions , 2009, Nucleic Acids Res..

[40]  F. Arnold,et al.  How proteins adapt: lessons from directed evolution. , 2009, Cold Spring Harbor symposia on quantitative biology.

[41]  F. Arnold,et al.  Improved product‐per‐glucose yields in P450‐dependent propane biotransformations using engineered Escherichia coli , 2011, Biotechnology and bioengineering.

[42]  S. Lütz,et al.  Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. , 2010, Journal of biotechnology.

[43]  T. Ahn,et al.  Functional expression of human cytochrome P450 enzymes in Escherichia coli. , 2006, Current drug metabolism.

[44]  F. Arnold,et al.  Enantioselective alpha-hydroxylation of 2-arylacetic acid derivatives and buspirone catalyzed by engineered cytochrome P450 BM-3. , 2006, Journal of the American Chemical Society.

[45]  F. Arnold,et al.  Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. , 2006, Biotechnology and bioengineering.

[46]  R. Bernhardt,et al.  Design of an Escherichia coli system for whole cell mediated steroid synthesis and molecular evolution of steroid hydroxylases. , 2006, Journal of biotechnology.

[47]  R. Bernhardt,et al.  Cytochromes P450 as versatile biocatalysts. , 2006, Journal of biotechnology.

[48]  M. Klingenberg Pigments of rat liver microsomes. , 2003, Archives of biochemistry and biophysics.

[49]  Andreas Schmid,et al.  Practical issues in the application of oxygenases. , 2003, Trends in biotechnology.

[50]  Y. Uno,et al.  Bioconversion of small molecules by cytochrome P450 species expressed in Escherichia coli , 2008, Biotechnology and applied biochemistry.

[51]  L. Maltais,et al.  Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. , 2004, Pharmacogenetics.

[52]  V. Urlacher,et al.  Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis , 2010, Applied Microbiology and Biotechnology.

[53]  E. Gillam,et al.  Membrane integration of recombinant human P450 forms , 2009, Xenobiotica; the fate of foreign compounds in biological systems.

[54]  Jeffrey B. Endelman,et al.  Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450 , 2006, PLoS biology.

[55]  N. Kagawa,et al.  The CYPome of Sorangium cellulosum So ce56 and identification of CYP109D1 as a new fatty acid hydroxylase. , 2010, Chemistry & biology.

[56]  P. Ortiz de Montellano,et al.  Tricistronic overexpression of cytochrome P450cam, putidaredoxin, and putidaredoxin reductase provides a useful cell-based catalytic system , 2009, Biotechnology Letters.

[57]  H. Ikeda,et al.  Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). , 2003, Biochemical and biophysical research communications.

[58]  Søren Bak,et al.  Comparative Genomics of Rice and Arabidopsis. Analysis of 727 Cytochrome P450 Genes and Pseudogenes from a Monocot and a Dicot1[w] , 2004, Plant Physiology.

[59]  J. F. Aparicio,et al.  Structure of cytochrome P450 PimD suggests epoxidation of the polyene macrolide pimaricin occurs via a hydroperoxoferric intermediate. , 2010, Chemistry & biology.

[60]  J. Sohng,et al.  Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin , 2008, Applied Microbiology and Biotechnology.

[61]  D. Kelly,et al.  The Mechanism of the Acyl-Carbon Bond Cleavage Reaction Catalyzed by Recombinant Sterol 14α-Demethylase of Candida albicans (Other Names Are: Lanosterol 14α-Demethylase, P-45014DM, and CYP51) (*) , 1996, The Journal of Biological Chemistry.

[62]  E. Gillam Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. , 2007, Archives of biochemistry and biophysics.

[63]  C. Rienstra,et al.  High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy. , 2007, Biochimica et biophysica acta.

[64]  Frances H Arnold,et al.  Cytochrome P450: taming a wild type enzyme. , 2011, Current opinion in biotechnology.

[65]  K. Purnapatre,et al.  Cytochrome P450s in the development of target-based anticancer drugs. , 2008, Cancer letters.

[66]  Kazuhiro MACHIDA,et al.  Organization of the Biosynthetic Gene Cluster for the Polyketide Antitumor Macrolide, Pladienolide, in Streptomyces platensis Mer-11107 , 2008, Bioscience, biotechnology, and biochemistry.

[67]  M. Sutcliffe,et al.  Thermodynamic and biophysical characterization of cytochrome P450 BioI from Bacillus subtilis. , 2004, Biochemistry.

[68]  Alexander Seifert,et al.  Identification of selectivity‐determining residues in cytochrome P450 monooxygenases: A systematic analysis of the substrate recognition site 5 , 2009, Proteins.

[69]  H. Agematu,et al.  A Modular Approach to Biotransformation Using Microbial Cytochrome P450 Monooxygenases , 2007 .

[70]  R. Bernhardt,et al.  Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. , 2008, Journal of biotechnology.

[71]  C. Wolf,et al.  Recombinant Yeast and Bacteria that Express Human P450s: Bioreactors for Drug Discovery, Development, and Biotechnology , 2007 .

[72]  H. Sahm,et al.  Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action , 1995, Journal of bacteriology.

[73]  T. Tsuchida,et al.  One-pot fermentation of pladienolide D by Streptomyces platensis expressing a heterologous cytochrome P450 gene. , 2009, Journal of bioscience and bioengineering.

[74]  P. Ortiz de Montellano,et al.  Rearrangement reactions catalyzed by cytochrome P450s. , 2011, Archives of biochemistry and biophysics.

[75]  Jürgen Pleiss,et al.  The Cytochrome P450 Engineering Database: integration of biochemical properties , 2009, BMC Biochemistry.

[76]  David Baker,et al.  A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3). , 2009, ACS chemical biology.

[77]  Bongsoo Park,et al.  Fungal cytochrome P450 database , 2008, BMC Genomics.

[78]  Toshiki Furuya,et al.  Genome mining approach for the discovery of novel cytochrome P450 biocatalysts , 2010, Applied Microbiology and Biotechnology.

[79]  Frances H Arnold,et al.  Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties. , 2007, Angewandte Chemie.

[80]  D. Kelly,et al.  The CYPome (Cytochrome P450 complement) of Aspergillus nidulans. , 2009, Fungal genetics and biology : FG & B.

[81]  Eun Jung Kim,et al.  Regioselective hydroxylation of daidzein using P450 (CYP105D7) from Streptomyces avermitilis MA4680 , 2010, Biotechnology and Bioengineering.

[82]  G. Grogan Cytochromes P450: exploiting diversity and enabling application as biocatalysts. , 2011, Current opinion in chemical biology.

[83]  A. Munro,et al.  Cytochrome P450--redox partner fusion enzymes. , 2007, Biochimica et biophysica acta.

[84]  N. Turner,et al.  Cytochromes P450 as useful biocatalysts: addressing the limitations. , 2011, Chemical communications.

[85]  John A. Robinson,et al.  An oxidative phenol coupling reaction catalyzed by oxyB, a cytochrome P450 from the vancomycin-producing microorganism. , 2004, Angewandte Chemie.

[86]  F. Arnold,et al.  A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. , 2009, Chemistry.

[87]  D. Kelly,et al.  The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are: lanosterol 14 alpha-demethylase, P-45014DM, and CYP51). , 1996, The Journal of biological chemistry.

[88]  J. Schrader,et al.  P450BM-3-catalyzed whole-cell biotransformation of α-pinene with recombinant Escherichia coli in an aqueous–organic two-phase system , 2009, Applied Microbiology and Biotechnology.

[89]  H. Sugimoto,et al.  Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton , 2007, Proceedings of the National Academy of Sciences.

[90]  A W Munro,et al.  Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. , 2005, Biochemical Society transactions.