Proton resonant firehose instability: Temperature anisotropy and fluctuating field constraints

The electromagnetic proton firehose instability may grow in a plasma if the proton velocity distribution is approximately bi-Maxwellian and T‖p > T⊥p, where the directional subscripts denote directions relative to the background magnetic field. Linear Vlasov dispersion theory in a homogeneous electron-proton plasma implies an instability threshold condition at constant maximum growth rate 1 − T⊥p/T‖p = Sp/β‖pαp over 1 < β‖p ≤ 10 where and Bo is the background magnetic field. Here Sp and αp are fitting parameters and αp ≃ 0.7. One- and two-dimensional initial value hybrid simulations of this growing mode are carried out under proton cyclotron resonant conditions in a homogeneous plasma on the initial domain 2 ≲ β‖p ≤ 100. The two-dimensional simulations show that enhanced fluctuations from this instability impose a bound on the proton temperature anisotropy of the form of the above equation with the fluid theory result αp ≃ 1.0. On this domain both one- and two-dimensional simulations yield a new form for the upper bound on the fluctuating field energy density from the proton resonant firehose instability where SB and αB are empirical parameters which are functions of the initial growth rate. This logarithmic behavior is qualitatively different from a fluid theory prediction and, like the anisotropy bound, should be subject to observational verification in any sufficiently homogeneous plasma in which the proton velocity distribution is approximately bi-Maxwellian.

[1]  S. Gary,et al.  Electromagnetic proton cyclotron instability: Proton velocity distributions , 1996 .

[2]  Eckart Marsch,et al.  Kinetic Physics of the Solar Wind Plasma , 1991 .

[3]  P. Yoon Electromagnetic fire-hose instability in a fully relativistic bi-Maxwellian plasma , 1989 .

[4]  K. Quest,et al.  Evolution of the fire‐hose instability: Linear theory and wave‐wave coupling , 1996 .

[5]  Michael Hesse,et al.  Microscale anisotropy reduction and macroscale dynamics of the magnetotail , 1995 .

[6]  S. Brecht,et al.  Two-dimensional simulation of high Mach number plasma interactions , 1986 .

[7]  L. Yin,et al.  Electromagnetic proton cyclotron instability: Interactions with magnetospheric protons , 1995 .

[8]  J. Boris,et al.  Marginal stability analysis: a simpler approach to anomalous transport in plasmas. Memorandum report , 1977 .

[9]  T. Terasawa,et al.  Physics of pitch angle scattering and velocity diffusion, 1. Theory , 1992 .

[10]  Brian J. Anderson,et al.  Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer , 1994 .

[11]  Charles F. Kennel,et al.  LIMIT ON STABLY TRAPPED PARTICLE FLUXES , 1966 .

[12]  Iver H. Cairns,et al.  Interstellar pickup ions and quasi‐perpendicular shocks: Implications for the termination shock and interplanetary shocks , 1996 .

[13]  D. Lockner,et al.  Room temperature creep in saturated granite , 1993 .

[14]  R. Denton,et al.  Density depletion in an anisotropic magnetosheath , 1996 .

[15]  H. Völk,et al.  New plasma instabilities in the solar wind , 1970 .

[16]  C. Kennel,et al.  THERMAL ANISOTROPIES AND ELECTROMAGNETIC INSTABILITIES IN THE SOLAR WIND. , 1968 .

[17]  Donald N. McCloskey Computation Outstrips Analysis , 1995 .

[18]  E. Parker Dynamical Instability in an Anisotropic Ionized Gas of Low Density , 1958 .

[19]  B. Anderson,et al.  Inverse correlations between the ion temperature anisotropy and plasma beta in the Earth's quasi-parallel magnetosheath , 1994 .

[20]  S. Gary,et al.  Two‐dimensional simulations of ion anisotropy instabilities in the magnetosheath , 1994 .

[21]  D. Winske,et al.  Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks , 1988 .

[22]  B. Anderson,et al.  Observational test of local proton cyclotron instability in the Earth's magnetosphere , 1996 .

[23]  Joseph Wang,et al.  Proton temperature anisotropy upper bound , 1997 .

[24]  J. Birn,et al.  On the cause of approximate pressure isotropy in the quiet near-earth plasma sheet , 1985 .

[25]  S. Gary,et al.  The ion cyclotron anisotropy instability and the inverse correlation between proton anisotropy and proton beta , 1994 .

[26]  S. Peter Gary,et al.  Proton temperature anisotropy instabilities in the solar wind , 1976 .

[27]  R. Thorne,et al.  Electromagnetic ion‐cyclotron instability in space plasmas , 1993 .

[28]  L. C. Lee,et al.  Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model , 1994 .