Europa's atmosphere, gas tori, and magnetospheric implications

Abstract A two-dimensional kinetic model calculation for the water group species (H2O, H2, O2, OH, O, H) in Europa's atmosphere is undertaken to determine its basic compositional structure, gas escape rates, and velocity distribution information to initialize neutral cloud model calculations for the most important gas tori. The dominant atmospheric species is O2 at low altitudes and H2 at higher altitudes with average day–night column densities of 4.5 × 10 14 and 7.7 × 10 13 cm −2 , respectively. H2 forms the most important gas torus with an escape rate of ∼ 2 × 10 27 s −1 followed by O with an escape rate of ∼ 5 × 10 26 s −1 , created primarily as exothermic O products from O2 dissociation by magnetospheric electrons. The circumplanetary distributions of H2 and O are highly peaked about the satellite location and asymmetrically distributed near Europa's orbit about Jupiter, have substantial forward clouds extending radially inward to Io's orbit, and have spatially integrated cloud populations of 4.2 × 10 33 molecules for H2 and 4.0 × 10 32 atoms for O that are larger than their corresponding populations in Europa's local atmosphere by a factor of ∼200 and ∼1000, respectively. The cloud population for H2 is a factor of ∼3 times larger than that for the combined cloud population of Io's O and S neutral clouds and provides the dominant neutral population beyond the so-called ramp region at 7.4–7.8 R J in the plasma torus. The calculated brightness of Europa's O cloud on the sky plane is very dim at the sub-Rayleigh level. The H2 and O tori provide a new source of europagenic molecular and atomic pickup ions for the thermal plasma and introduce a neutral barrier in which new plasma sinks are created for the cooler iogenic plasma as it is transported radially outward and in which new sinks are created to alter the population and pitch angle distribution of the energetic plasma as it is transported radially inward. The europagenic instantaneous pickup ion rates are peaked at Europa's orbit, dominate the iogenic pickup ion rates beyond the ramp region, and introduce new secondary plasma source peaks in the solution of the plasma transport problem. The H2 torus is identified as the unknown Europa gas torus that creates both the observed loss of energetic H+ ions at Europa's orbit and the corresponding measured ENA production rate for H.

[1]  E. Sieveka,et al.  Plasma ion-induced molecular ejection on the Galilean satellites - Energies of ejected molecules , 1983 .

[2]  S. Krimigis,et al.  Energetic neutral atoms from Jupiter measured with the Cassini magnetospheric imaging instrument: Time dependence and composition , 2004 .

[3]  D. Shemansky,et al.  Electron impact dissociative excitation of O2: 2. Absolute emission cross sections of the OI(130.4 nm) and OI(135.6 nm) lines , 2003 .

[4]  Robert E. Johnson,et al.  Near-surface oxygen atmosphere at Europa , 2001 .

[5]  W. M. Gray,et al.  The Abundance of O ++ in the Jovian Magnetosphere (Paper 92GL00070) 79 , 1992 .

[6]  Edmond C. Roelof,et al.  Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere , 2004 .

[7]  J. Mcconkey,et al.  Production of ground state OH following electron impact on H2O , 2001 .

[8]  J. Ajello,et al.  Electron impact dissociative excitation of O2: 1. Kinetic energy distributions of fast oxygen atoms , 2003 .

[9]  K. Wakiya Differential and integral cross sections for the electron impact excitation of O2. II. Optically forbidden transitions from the ground state , 1978 .

[10]  Philip C. Cosby,et al.  Electron‐impact dissociation of oxygen , 1993 .

[11]  M. Marconi Structure and Composition of Europa's Atmosphere , 2003 .

[12]  J. Cooper,et al.  Surface-bounded atmosphere of Europa , 2005 .

[13]  D. Williams,et al.  Determination of the neutral number density in the Io torus from Galileo‐EPD measurements , 1998 .

[14]  M. Combi,et al.  A general model for Io's neutral gas clouds. I: Mathematical description , 1988 .

[15]  Michael E. Brown,et al.  Europa's Sodium Atmosphere: An Ocean Source? , 2002 .

[16]  Michael E. Brown,et al.  Potassium in Europa's Atmosphere , 2001 .

[17]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[18]  W. Smyth,et al.  Io's oxygen source: Determination from ground‐based observations and implications for the plasma torus , 2000 .

[19]  J. D. Sullivan,et al.  Ring current impoundment of the Io plasma torus , 1981 .

[20]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[21]  R. Hill,et al.  Discovery of an extended sodium atmosphere around Europa , 1996, Nature.

[22]  R. Brown The Jupiter hot plasma torus - Observed electron temperature and energy flows , 1981 .

[23]  T. Hill,et al.  The Io neutral clouds and plasma torus , 2004 .

[24]  Structure and evolution of a quasi-collisional gas torus (case of the Triton hydrogen torus) , 2003 .

[25]  D. Shemansky,et al.  Cross sections for production of H(2p, 2s, 1s) by electron collisional dissociation of H2 , 1991 .

[26]  J. Clarke,et al.  Line profile of H Lyman α from dissociative excitation of H2 with application to Jupiter , 1995 .

[27]  K. A. Smith,et al.  Absolute partial cross sections for electron-impact ionization of CH_4, H_2O, and D_2O from threshold to 1000 eV. , 1996 .

[28]  H. Keller,et al.  Ultraviolet Imaging Spectroscopy Shows an Active Saturnian System , 2005, Science.

[29]  A. Dalgarno,et al.  Electron Energy Deposition in a Gas Mixture of Atomic and Molecular Hydrogen and Helium , 1999 .

[30]  D. Intriligator,et al.  First evidence for a Europa plasma torus , 1982 .

[31]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[32]  Robert E. Johnson,et al.  Planetary applications of ion induced erosion of condensed gas frosts , 1982 .

[33]  Robert E. Johnson,et al.  Photolysis and radiolysis of water ice on outer solar system bodies , 1997 .

[34]  Wing-Huen Ip,et al.  Europa's Oxygen Exosphere and Its Magnetospheric Interaction , 1996 .

[35]  D. Wolf-Gladrow,et al.  Io's interaction with the plasma torus: A self-consistent model , 1987 .

[36]  B. Sandel,et al.  Radial profiles of ion density and parallel temperature in the Io plasma torus during the Voyager 1 encounter , 1995 .

[37]  F. Flasar,et al.  The ionosphere of Europa from Galileo radio occultations. , 1997, Science.

[38]  M. Combi,et al.  A General Model for Io's Neutral Gas Clouds. II. Application to the Sodium Cloud , 1988 .

[39]  B. Mauk,et al.  Ion sputtering and surface erosion at Europa , 1998 .

[40]  W. Huebner,et al.  Solar photo rates for planetary atmospheres and atmospheric pollutants , 1984 .

[41]  Rosemary M. Killen,et al.  Origins of Europa Na cloud and torus , 2005 .

[42]  Stefan Dietrich,et al.  Scalar and Parallel Optimized Implementation of the Direct Simulation Monte Carlo Method , 1996 .

[43]  E. Krishnakumar,et al.  Cross-sections for electron impact ionization of O2 , 1992 .

[44]  D. G. Mitchell,et al.  Energetic neutral atoms from a trans-Europa gas torus at Jupiter , 2003, Nature.

[45]  J. Schou,et al.  Sputtering of water ice surfaces and the production of extended neutral atmospheres , 1995 .

[46]  D. Strobel,et al.  The ion mass loading rate at Io , 2003 .

[47]  M. Combi,et al.  Effects of kinetic processes in shaping Io's global plasma environment: A 3D hybrid model , 2006 .

[48]  Fritz M. Neubauer,et al.  The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere , 1998 .

[49]  J. Tennyson,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. RATES FOR THE ELECTRON IMPACT DISSOCIATION OF MOLECULAR HYDROGEN , 1999 .

[50]  Paul D. Feldman,et al.  The Far-Ultraviolet Oxygen Airglow of Europa and Ganymede , 1998 .

[51]  G. S. Voronov,et al.  A PRACTICAL FIT FORMULA FOR IONIZATION RATE COEFFICIENTS OF ATOMS AND IONS BY ELECTRON IMPACT:Z= 1–28 , 1997 .

[52]  Barry H. Mauk,et al.  Hot plasma parameters of Jupiter's inner magnetosphere , 1996 .

[53]  R. E. Johnson,et al.  Erosion of galilean satellite surfaces by jovian magnetosphere particles. , 1981, Science.

[54]  Amanda R. Hendrix,et al.  Cassini UVIS observations of Europa's oxygen atmosphere and torus , 2005 .

[55]  R. E. Johnson,et al.  The production of oxidants in Europa's surface. , 2003, Astrobiology.

[56]  Robert E. Johnson,et al.  Charge exchange cross sections for the Io plasma torus , 1989 .

[57]  F. M. Neubauer,et al.  Nonlinear standing Alfvén wave current system at Io: Theory , 1980 .

[58]  J. Richardson,et al.  Modeling the Europa plasma torus , 1993 .

[59]  Fritz M. Neubauer,et al.  Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere , 1998 .

[60]  D. Williams,et al.  In‐situ observations of a neutral gas torus at Europa , 2003 .

[61]  B. Mauk,et al.  The radiation environment near Io , 2003 .

[62]  W. Smyth,et al.  Nature of the iogenic plasma source in Jupiter's magnetosphere. II. Near-Io distribution , 2005 .

[63]  Spencer,et al.  Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies , 1999, Science.

[64]  F. Bagenal Empirical model of the Io plasma torus: Voyager measurements , 1994 .

[65]  Garrett,et al.  Electronic excitation and dissociation of O2 and S2 by electron impact. , 1985, Physical review. A, General physics.

[66]  W. Smyth,et al.  Nature of the iogenic plasma source in Jupiter's magnetosphere: I. Circumplanetary distribution , 2003 .

[67]  Robert A. West,et al.  Time-Variable Phenomena in the Jovian System , 1989 .

[68]  Tatsuo Tabata,et al.  ANALYTIC CROSS SECTIONS FOR ELECTRON COLLISIONS WITH CO, CO2, AND H2O RELEVANT TO EDGE PLASMA IMPURITIES , 2001 .

[69]  D. Strobel,et al.  Io plasma torus electrons: Voyager 1 , 1987 .