Collaborative representation Bayesian face recognition

中文摘要近年来, 基于协同表示的人脸识别方法取得了诸多进展。然而, 在训练集字典欠完备的小样本情况下, 基于协同表示的分类方法的结果并不理想。这很大程度上, 是由于该方法使用了欧式距离残差判据。传统的欧式距离残差判据在小样本情况下, 并不能有效地区分类内残差和类间残差。针对这一问题, 我们引入了贝叶斯残差模型来更好地区分类内残差, 并将协同表示机制与贝叶斯残差模型结合, 提出了协同表示贝叶斯人脸识别方法。实验证明, 我们提出的方法在小样本情况下具有比较明显的优势, 且该方法具有较好的可迁移性。创新点: 1、分析了基于协同表示分类方法的残差模型, 并指出了传统的欧式距离残差模型在小样本情况下的问题。2、引入了贝叶斯残差模型来更好地区分小样本情况下的类内残差和类间残差, 并提出了使用类内灰度差来估计类内残差分布的方法。3、将协同表示模型与贝叶斯残差模型相结合, 提出了协同表示贝叶斯人脸识别方法。改方法在小样本情况下具有较好的鲁棒性, 并具有较好的可迁移性。

[1]  Alex Pentland,et al.  Bayesian face recognition using deformable intensity surfaces , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[3]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  David W. Jacobs,et al.  Guest Editors' Introduction to the Special Section on Perceptual Organization in Computer Vision , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Alex Pentland,et al.  Bayesian face recognition , 2000, Pattern Recognit..

[7]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Xiaoyang Tan,et al.  Sparsity preserving discriminant analysis for single training image face recognition , 2010, Pattern Recognit. Lett..

[9]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[10]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.