Digital image processing in measurement of ice thickness on power transmission lines : a Rough Set approach

......................................................................................................3 ACKNOWLEDGEMENTS ..................................................................................4 TABLE OF CONTENTS .....................................................................................5 LIST OF TABLES...............................................................................................8 LIST OF FIGURES ............................................................................................9

[1]  Sheela Ramanna,et al.  Rough Neural Network for Software Change Prediction , 2002, Rough Sets and Current Trends in Computing.

[2]  Andrzej Skowron,et al.  Sensor, Filter, and Fusion Models with Rough Petri Nets , 2001, Fundam. Informaticae.

[3]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[4]  Andrzej Skowron,et al.  Measures of Inclusion and Closeness of Information Granules: A Rough Set Approach , 2002, Rough Sets and Current Trends in Computing.

[5]  A. Skowron,et al.  Clustering : A Rough Set Approach to Constructing Information Granules , 2002 .

[6]  Zbigniew Suraj,et al.  Rough Neurons: Petri Net Models and Applications , 2004, Rough-Neural Computing: Techniques for Computing with Words.

[7]  Tae-Chon Ahn,et al.  Obstacle Classification by a Line-Crawling Robot: A Rough Neurocomputing Approach , 2002, Rough Sets and Current Trends in Computing.

[8]  H. Gouraud Continuous Shading of Curved Surfaces , 1971, IEEE Transactions on Computers.

[9]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[10]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[11]  Andrzej Skowron,et al.  Rough-Neuro Computing , 2000, Rough Sets and Current Trends in Computing.

[12]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[13]  L. T. Wurtz,et al.  A CMOS parallel Gouraud shading VLSI architecture , 1992, Proceedings IEEE Southeastcon '92.

[14]  Maciej Borkowski,et al.  Signal Analysis Using Rough Integrals , 2002, Rough Sets and Current Trends in Computing.

[15]  Andrzej Skowron,et al.  Rough-Neural Computing: Techniques for Computing with Words , 2004, Cognitive Technologies.

[16]  Andrzej Skowron,et al.  Rough measures: Theory and applications , 2000 .

[17]  James F. Peters,et al.  Line-crawling robot navigation: a rough neurocomputing approach , 2003 .

[18]  David G. Stork,et al.  Pattern Classification , 1973 .

[19]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[20]  J. F. Peters,et al.  Approximating sensor signals: a rough set approach , 2002, IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373).