Physical programming for preference driven evolutionary multi-objective optimization

Graphical abstractDisplay Omitted HighlightsWe deal with preference driven evolutionary multi-objective optimization statements.Our approach uses physical programming to include preferences in the optimization.Preferences and constraints are included in a meaningful way for the designer.The implemented algorithm shows its usefulness to compute a pertinent Pareto front. Preference articulation in multi-objective optimization could be used to improve the pertinency of solutions in an approximated Pareto front. That is, computing the most interesting solutions from the designer's point of view in order to facilitate the Pareto front analysis and the selection of a design alternative. This articulation can be achieved in an a priori, progressive, or a posteriori manner. If it is used within an a priori frame, it could focus the optimization process toward the most promising areas of the Pareto front, saving computational resources and assuring a useful Pareto front approximation for the designer. In this work, a physical programming approach embedded in an evolutionary multi-objective optimization is presented as a tool for preference inclusion. The results presented and the algorithm developed validate the proposal as a potential tool for engineering design by means of evolutionary multi-objective optimization.

[1]  Sylvia Encheva,et al.  Multi-criteria decision-making , 2009 .

[2]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[3]  Demetris Koutsoyiannis,et al.  One decade of multi-objective calibration approaches in hydrological modelling: a review , 2010 .

[4]  Xavier Blasco Ferragud,et al.  Modelling preferences in multi-objective engineering design , 2010, Eng. Appl. Artif. Intell..

[5]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[6]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[7]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[8]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[9]  J. V. Salcedo,et al.  A new perspective on multiobjective optimization by enhanced normalized normal constraint method , 2008 .

[10]  Xavier Blasco Ferragud,et al.  Multiobjective evolutionary algorithms for multivariable PI controller design , 2012, Expert Syst. Appl..

[11]  Ponnuthurai N. Suganthan,et al.  Guest Editorial Special Issue on Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[12]  Ponnuthurai N. Suganthan,et al.  Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection , 2010, Inf. Sci..

[13]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[14]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[15]  Tehseen Aslam,et al.  Multi-objective optimization for supply chain management: A literature review and new development , 2010, 2010 8th International Conference on Supply Chain Management and Information.

[16]  Ki-Baek Lee,et al.  Multi-objective particle swarm optimization with preference-based sorting , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[17]  Gilberto Reynoso-Meza,et al.  Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas , 2013 .

[18]  Xavier Blasco Ferragud,et al.  Design of Continuous Controllers Using a Multiobjective Differential Evolution Algorithm with Spherical Pruning , 2010, EvoApplications.

[19]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[20]  François Maréchal,et al.  Methods for multi-objective investment and operating optimization of complex energy systems , 2012 .

[21]  Rainer Storn,et al.  Differential Evolution Research – Trends and Open Questions , 2008 .

[22]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[23]  Achille Messac,et al.  Soft constraints-based multiobjective framework for flux balance analysis. , 2010, Metabolic engineering.

[24]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[25]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[26]  Dennis S. Bernstein,et al.  Benchmark Problems for Robust Control Design , 1991, 1991 American Control Conference.

[27]  Xavier Blasco Ferragud,et al.  A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization , 2008, Inf. Sci..

[28]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[29]  Oliver Kramer,et al.  Rake Selection: A Novel Evolutionary Multi-Objective Optimization Algorithm , 2009, KI.

[30]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[31]  Carlos A. Coello Coello,et al.  Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art , 2008 .

[32]  Erkki Oja,et al.  Engineering applications of the self-organizing map , 1996, Proc. IEEE.

[33]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[34]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[35]  Kerstin Vogler,et al.  Applications Of Multi Objective Evolutionary Algorithms , 2016 .

[36]  David Gallear,et al.  Decision support for build-to-order supply chain management through multiobjective optimization , 2012 .

[37]  Dmitry Podkopaev,et al.  Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy , 2012, Eur. J. Oper. Res..

[38]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[39]  Piero P. Bonissone,et al.  Multicriteria decision making (mcdm): a framework for research and applications , 2009, IEEE Computational Intelligence Magazine.

[40]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[41]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[42]  Xavier Blasco,et al.  Resultados del Concurso de Ingeniería de Control 2012 y Convocatoria 2013 , 2013 .

[43]  Carlos A. Coello Coello,et al.  Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition , 2011, MCPR.

[44]  Frederico G. Guimarães,et al.  Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms , 2011, EMO.

[45]  Salvatore Greco,et al.  Evolutionary Multi-Criterion Optimization , 2011, Lecture Notes in Computer Science.

[46]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[47]  Gilberto Reynoso-Meza,et al.  Controller tuning using evolutionary multi-objective optimisation: Current trends and applications , 2014 .

[48]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[49]  Xavier Blasco Ferragud,et al.  Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[50]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[51]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[52]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[53]  Liang Gao,et al.  Multi-objective optimization algorithms for flow shop scheduling problem: a review and prospects , 2011 .

[54]  Christopher A. Mattson,et al.  Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization , 2005 .

[55]  Mohd Amran Mohd Radzi,et al.  Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review , 2012 .

[56]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[57]  Sujatha Srinivasan,et al.  Evolutionary multi objective optimization for rule mining: a review , 2011, Artificial Intelligence Review.

[58]  Kaisa Miettinen,et al.  Visualizing the Pareto Frontier , 2008, Multiobjective Optimization.

[59]  A. Messac,et al.  Generating Well-Distributed Sets of Pareto Points for Engineering Design Using Physical Programming , 2002 .

[60]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[61]  Xavier Blasco Ferragud,et al.  Multiobjective controller design handling human preferences , 2006, Eng. Appl. Artif. Intell..

[62]  Joseph R. Kasprzyk,et al.  Evolutionary multiobjective optimization in water resources: The past, present, and future , 2012 .

[63]  Peter J. Fleming,et al.  Preference-Driven Co-evolutionary Algorithms Show Promise for Many-Objective Optimisation , 2011, EMO.

[64]  Belaid Aouni,et al.  Group Decision Makers' Preferences Modelling within the Goal Programming Model: An Overview and a Typology , 2012 .

[65]  Konstantinos Liagkouras,et al.  Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review , 2012, Expert Syst. Appl..

[66]  Gilberto Reynoso-Meza,et al.  Control autónomo del seguimiento de trayectorias de un vehículo cuatrirrotor. Simulación y evaluación de propuestas , 2012 .

[67]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[68]  Kalyanmoy Deb,et al.  Parallelizing multi-objective evolutionary algorithms: cone separation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[69]  Eduardo Fernández,et al.  Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method , 2011, Inf. Sci..

[70]  Siti Zaiton Mohd Hashim,et al.  Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007-2011) , 2012, Expert Syst. Appl..

[71]  Xavier Blasco Ferragud,et al.  Comparison of design concepts in multi-criteria decision-making using level diagrams , 2013, Inf. Sci..