Temperature-dependent tensile strength of CNT/polymer nanocomposites considering the effects of CNT networks and waviness: Characterization and modeling

[1]  Yong Wang,et al.  Boosting the Capacity of Aqueous Li‐Ion Capacitors via Pinpoint Surgery in Nanocoral‐Like Covalent Organic Frameworks , 2022, Small methods.

[2]  Hongyan Liu,et al.  Plasmon-induced broad spectrum photocatalytic overall water splitting: through non-noble bimetal nanoparticles hybrid with reduced graphene oxide , 2022, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[3]  Weiguo Li,et al.  Micromechanical modeling for the temperature-dependent yield strength of polymer-matrix nanocomposites , 2022, Composites Science and Technology.

[4]  R. Ansari,et al.  A novel temperature-dependent percolation model for the electrical conductivity and piezoresistive sensitivity of carbon nanotube-filled nanocomposites , 2022, Acta Materialia.

[5]  K. Hata,et al.  Annealing-induced enhancement of electrical conductivity and electromagnetic interference shielding in injection-molded CNT polymer composites , 2022, Polymer.

[6]  Weiguo Li,et al.  A theoretical model for the tensile modulus of polymer/CNT nanocomposites over a wide temperature range , 2021, Composites Communications.

[7]  Apostolos Avgeropoulos,et al.  Self-assembly behavior of ultra-high molecular weight in-situ anionically synthesized polymer matrix composite materials “grafted from” single- or multi-wall CNTs , 2021, Polymer.

[8]  Liduo Wang,et al.  Modeling the temperature dependent ultimate tensile strength of fiber/polymer composites considering fiber agglomeration , 2021 .

[9]  Weiguo Li,et al.  Theoretical characterization of the temperature‐dependent ultimate tensile strength of short‐fiber‐reinforced polymer composites , 2021, Polymer Composites.

[10]  Jing Ruan,et al.  Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties , 2021 .

[11]  Weiguo Li,et al.  Temperature-dependent shear failure modes and tensile strength model of CNT/polymer nanocomposites , 2021, Composites Communications.

[12]  T. Hashida,et al.  Molecular Dynamics Simulations and Theoretical Model for Engineering Tensile Properties of Single-and Multi-Walled Carbon Nanotubes , 2021, Nanomaterials.

[13]  S. Fu,et al.  A new analytical model for predicting the electrical conductivity of carbon nanotube nanocomposites , 2021, Composites Communications.

[14]  K. Rhee,et al.  Development of Conventional Paul Model for Tensile Modulus of Polymer Carbon Nanotube Nanocomposites After Percolation Threshold by Filler Network Density , 2020, JOM.

[15]  Jianzuo Ma,et al.  Temperature dependent longitudinal tensile strength model of unidirectional fiber reinforced polymer composites considering the effect of matrix plasticity , 2020 .

[16]  H. Dai,et al.  Investigation on microscale hygrothermal behavior of carbon nanotube‐reinforced polymer composite , 2020 .

[17]  Jianzuo Ma,et al.  Temperature dependent strengthening mechanisms and yield strength for CNT/metal composites , 2020 .

[18]  K. Rhee,et al.  Analysis of critical interfacial shear strength between polymer matrix and carbon nanotubes and its impact on the tensile strength of nanocomposites , 2020 .

[19]  K. Rhee,et al.  Effects of critical interfacial shear strength between a polymer matrix and carbon nanotubes on the interphase strength and Pukanszky's “B” interphase parameter , 2020, RSC advances.

[20]  K. Rhee,et al.  Modeling the Effects of Filler Network and Interfacial Shear Strength on the Mechanical Properties of Carbon Nanotube-Reinforced Nanocomposites , 2020 .

[21]  P. Verma,et al.  Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling , 2020 .

[22]  K. Rhee,et al.  Study on the Effects of the Interphase Region on the Network Properties in Polymer Carbon Nanotube Nanocomposites , 2020, Polymers.

[23]  R. Ansari,et al.  A new micromechanical method for the analysis of thermal conductivities of unidirectional fiber/CNT-reinforced polymer hybrid nanocomposites , 2019, Composites Part B: Engineering.

[24]  M. Mahmoodi,et al.  CNT-volume-fraction-dependent aggregation and waviness considerations in viscoelasticity-induced damping characterization of percolated-CNT reinforced nanocomposites , 2019, Composites Part B: Engineering.

[25]  R. Ansari,et al.  Creep performance of CNT polymer nanocomposites -An emphasis on viscoelastic interphase and CNT agglomeration , 2019, Composites Part B: Engineering.

[26]  Renu Sharma,et al.  Aligned carbon nanotube morphogenesis predicts physical properties of their polymer nanocomposites. , 2019, Nanoscale.

[27]  T. Hashida,et al.  How do the mechanical properties of carbon nanotubes increase? An experimental evaluation and modeling of the engineering tensile strength of individual carbon nanotubes , 2019, Materials Research Express.

[28]  Jianzuo Ma,et al.  Theoretical model for the tensile strength of polymer materials considering the effects of temperature and particle content , 2018, Materials Research Express.

[29]  A. Deshmukh,et al.  Prediction, evaluation and mechanism governing interphase strength in tensile fractured PA-6/MWCNT nanocomposites , 2018, Composites Part A: Applied Science and Manufacturing.

[30]  D. Peshwe,et al.  Theoretical prediction of interfacial properties of PBT/CNT nanocomposites and its experimental evaluation , 2017 .

[31]  K. Rhee,et al.  The mechanical behavior of CNT reinforced nanocomposites assuming imperfect interfacial bonding between matrix and nanoparticles and percolation of interphase regions , 2017 .

[32]  T. Hashida,et al.  Potential use of CNTs for production of zero thermal expansion coefficient composite materials: An experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests , 2017 .

[33]  Bankim Chandra Ray,et al.  Temperature dependent reinforcement efficiency of carbon nanotube in polymer composite , 2016 .

[34]  B. Wardle,et al.  Mechanics of aligned carbon nanotube polymer matrix nanocomposites simulated via stochastic three-dimensional morphology , 2016, Nanotechnology.

[35]  Bankim Chandra Ray,et al.  Flexural behaviour of CNT-filled glass/epoxy composites in an in-situ environment emphasizing temperature variation , 2015 .

[36]  B. Wardle,et al.  Packing morphology of wavy nanofiber arrays. , 2015, Physical chemistry chemical physics : PCCP.

[37]  Yuli Chen,et al.  Stiffness threshold of randomly distributed carbon nanotube networks , 2015 .

[38]  Yuli Chen,et al.  Carbon Nanotube Reinforced Composites: The Smaller Diameter, the Higher Fracture Toughness? , 2015 .

[39]  Y. Zare Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly–Tyson theory , 2015 .

[40]  T. Fujii,et al.  Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform , 2014 .

[41]  Yaodong Liu,et al.  Temperature dependent tensile behavior of gel-spun polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers , 2013 .

[42]  Liying Jiang,et al.  Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites , 2013 .

[43]  R. Rafiee Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites , 2013 .

[44]  H. Wagner,et al.  Effect of scale and surface chemistry on the mechanical properties of carbon nanotubes‐based composites , 2012 .

[45]  A. To,et al.  Mechanical properties of SWNT X-Junctions through molecular dynamics simulation , 2012 .

[46]  J. Gillespie,et al.  The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test , 2012 .

[47]  Bin Liu,et al.  Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites , 2010 .

[48]  A. Milani,et al.  Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures , 2010 .

[49]  D. Fang,et al.  The temperature-dependent fracture strength model for ultra-high temperature ceramics , 2010 .

[50]  S. Fu,et al.  The reduction of carbon nanotube (CNT) length during the manufacture of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strengths , 2009 .

[51]  S. Bai,et al.  Prediction of Effective Moduli of Carbon Nanotube-Reinforced Composites with Waviness and Debonding , 2009 .

[52]  K. Schulte,et al.  Multiwall carbon nanotube/epoxy composites produced by a masterbatch process , 2006 .

[53]  A. Chatterjee A model for the elastic moduli of three-dimensional fiber networks and nanocomposites , 2006 .

[54]  Linda S. Schadler,et al.  Fracture Transitions at a Carbon‐Nanotube/Polymer Interface , 2006 .

[55]  Sidney R. Cohen,et al.  Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix , 2004 .

[56]  Huajian Gao,et al.  The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites , 2004 .

[57]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[58]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[59]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[60]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[61]  R. J. Gaymans,et al.  Polyamide 6—long glass fiber injection moldings , 1995 .

[62]  B. Pukánszky Influence of interface interaction on the ultimate tensile properties of polymer composites , 1990 .

[63]  I. Balberg,et al.  Excluded-volume explanation of Archie's law. , 1986, Physical review. B, Condensed matter.

[64]  A. Kelly,et al.  Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum , 1965 .

[65]  J. E. Mark,et al.  Physical properties of polymers handbook , 2007 .

[66]  J. Schwartz,et al.  Mechanical Properties of Carbon Nanotube Reinforced Polycarbonate at Cryogenic Temperature , 2007 .

[67]  M. Yeh,et al.  Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement , 2004 .