Responses of γ-aminobutyrate receptor from rat brain: Similarity of different preparation methods; muscimol induced desensitization and chloride exchange

[1]  P. S. Kim,et al.  Acetylcholine receptor-controlled ion flux in electroplax membrane vesicles: Identification and characterization of membrane properties that affect ion flux measurements , 1981, The Journal of Membrane Biology.

[2]  F. V. Defeudis Ligand-binding studies on GABA receptors—Relation to physiology and behavior , 1984, Neurochemical Research.

[3]  T. Fisher,et al.  A comparison of methods for removal of endogenous GABA from brain membranes prepared for binding assays , 2004, Neurochemical Research.

[4]  I. Martin,et al.  GABA RECEPTORS , 2002 .

[5]  Frauke Pohlki,et al.  The Mechanism of the , 2001, Angewandte Chemie.

[6]  R. Langer,et al.  Transmembrane flux and receptor desensitization measured with membrane vesicles. Homogeneity of vesicles investigated by computer simulation. , 1988, Biophysical journal.

[7]  P. Seeburg,et al.  Structural and functional basis for GABAA receptor heterogeneity , 1988, Nature.

[8]  K. Subbarao,et al.  Different effects of pentobarbital on two gamma-aminobutyrate receptors from rat brain: channel opening, desensitization, and an additional conformational change. , 1988, Biochemistry.

[9]  R. D. Schwartz,et al.  Inhibition of the GABA receptor-gated chloride ion channel in brain by noncompetitive inhibitors of the nicotinic receptor-gated cation channel. , 1988, The Journal of pharmacology and experimental therapeutics.

[10]  K. Subbarao,et al.  Channel opening of gamma-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses. , 1987, Biochemistry.

[11]  K. Subbarao,et al.  Desensitization of gamma-aminobutyric acid receptor from rat brain: two distinguishable receptors on the same membrane. , 1987, Biochemistry.

[12]  K. Subbarao,et al.  gamma-Aminobutyric acid (GABA) mediated transmembrane chloride flux with membrane vesicles from rat brain measured by quench flow technique: kinetic homogeneity of ion flux and receptor desensitization. , 1987, Life sciences.

[13]  K. Subbarao,et al.  Two desensitization processes of GABA receptor from rat brain , 1987, FEBS letters.

[14]  R. Olsen,et al.  gamma-Aminobutyric acid receptor-regulated 36Cl- flux in mouse cortical slices. , 1987, The Journal of pharmacology and experimental therapeutics.

[15]  S. Paul,et al.  gamma-Aminobutyric acid (GABA)- and barbiturate-mediated 36Cl- uptake in rat brain synaptoneurosomes: evidence for rapid desensitization of the GABA receptor-coupled chloride ion channel. , 1986, Molecular pharmacology.

[16]  R. Harris,et al.  Anesthetic and convulsant barbiturates alter gamma-aminobutyric acid-stimulated chloride flux across brain membranes. , 1986, The Journal of pharmacology and experimental therapeutics.

[17]  S. Paul,et al.  GABA receptor-mediated chloride transport in a "cell-free" membrane preparation from brain. , 1986, Science.

[18]  R. Harris,et al.  gamma-Aminobutyric acid agonists and antagonists alter chloride flux across brain membranes. , 1986, Molecular pharmacology.

[19]  S. Paul,et al.  Demonstration of GABA/barbiturate-receptor-mediated chloride transport in rat brain synaptoneurosomes: a functional assay of GABA receptor-effector coupling. , 1986, Advances in biochemical psychopharmacology.

[20]  S. Paul,et al.  Characterization of barbiturate-stimulated chloride efflux from rat brain synaptoneurosomes , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[22]  R. J. Williams,et al.  Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3':5'-monophosphate- generating systems, receptors, and enzymes , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  R. Harris,et al.  Functional coupling of gamma-aminobutyric acid receptors to chloride channels in brain membranes. , 1985, Science.

[24]  R. Harris,et al.  Demonstration of GABA-stimulated 36Cl- flux with isolated brain membranes , 1985 .

[25]  S. Paul,et al.  Barbiturate and picrotoxin‐sensitive chloride efflux in rat cerebral cortical synaptoneurosomes , 1984, FEBS letters.

[26]  González-González Mp,et al.  The chloride channel opening by GABA as an energy dependent process. , 1984 .

[27]  F. V. Defeudis,et al.  GABA RECEPTORS IN THE VERTEBRATE CNS , 1984 .

[28]  M. P. González,et al.  The chloride channel opening by GABA as an energy dependent process. , 1984, Revista espanola de fisiologia.

[29]  S. R. Snodgrass,et al.  Receptors for Amino Acid Transmitters , 1983 .

[30]  S. Enna,et al.  Biochemical and electrophysiological characteristics of mammalian GABA receptors. , 1983, International review of neurobiology.

[31]  J. Skerritt,et al.  Differences in the interactions between GABA and benzodiazepine binding sites , 1982, Neuroscience Letters.

[32]  A. Sachs,et al.  A convenient large-scale method for the isolation of membrane vesicles permeable to a specific inorganic ion: isolation and characterization of functional acetylcholine receptor-containing vesicles from the electric organ of Electrophorus electricus. , 1982, Analytical biochemistry.

[33]  P. Krogsgaard‐Larsen,et al.  The Binding of the GAB A Agonist [3H]THIP to Rat Brain Synaptic Membranes , 1982, Journal of neurochemistry.

[34]  R. Olsen Drug interactions at the GABA receptor-ionophore complex. , 1982, Annual review of pharmacology and toxicology.

[35]  Jonathan B. Cohen,et al.  Fractionation by velocity sedimentation of Torpedo nicotinic post-synaptic membranes , 1981 .

[36]  G. P. Hess,et al.  Mechanism of inactivation (desensitization) of acetylcholine receptor. Investigations by fast reaction techniques with membrane vesicles. , 1981, Biochemistry.

[37]  G. P. Hess,et al.  Specific reaction rate of acetylcholine receptor-controlled ion translocation: a comparison of measurements with membrane vesicles and with muscle cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. P. Hess,et al.  Kinetic mechanism of acetylcholine receptor-controlled ion flux: Flow quench kinetic measurements of acetylcholine-induced flux in membrane vesicles , 1980, Neurochemistry International.

[39]  J. Daly,et al.  Accumulations of Cyclic AMP in Adenine‐Labeled Cell‐free Preparations from Guinea Pig Cerebral Cortex: Role of α‐Adrenergic and H1‐Histaminergic Receptors , 1980, Journal of neurochemistry.

[40]  K. Beaumont,et al.  Muscimol binding in rat brain: Association with synaptic GABA receptors , 1978, Brain Research.

[41]  R. Olsen,et al.  Endogenous inhibitor of GABA binding in mammalian brain. , 1978, Life Science.

[42]  R. Olsen,et al.  gamma-Aminobutyric acid-stimulated chloride permeability in crayfish muscle. , 1977, Biochimica et biophysica acta.

[43]  S. Snyder,et al.  Properties of γ-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions , 1975, Brain Research.

[44]  J. P. Andrews,et al.  Acetylcholine-receptor-mediated ion flux in electroplax membrane preparations. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Young,et al.  Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Schaeffer,et al.  Gamma-aminobutyric acid, bicuculline, and post-synaptic binding sites. , 1973, Biochemical and biophysical research communications.