Computability theory, algorithmic randomness and Turing's anticipation
暂无分享,去创建一个
[1] Peter Cholak. Automorphisms of the lattice of recursively enumerable sets , 1995, Memoirs of the American Mathematical Society.
[2] Alistair H. Lachlan. Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .
[3] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[4] Paul M. B. Vitányi,et al. Information Distance in Multiples , 2009, IEEE Transactions on Information Theory.
[5] Marie Ferbus-Zanda,et al. Is Randomness "Native" to Computer Science? , 2008, Bull. EATCS.
[6] Richard A. Shore,et al. A non-inversion theorem for the jump operator , 1988, Ann. Pure Appl. Log..
[7] C. E. M. Yates. A Minimal Pair of Recursively Enumerable Degrees , 1966, J. Symb. Log..
[8] R. Shore. The recursively enumerable α-degrees are dense , 1976 .
[9] H. Lebesgue. Sur certaines démonstrations d'existence , 1917 .
[10] Ronald de Wolf,et al. Algorithmic Clustering of Music Based on String Compression , 2004, Computer Music Journal.
[11] Wolfgang Merkle,et al. Reconciling Data Compression and Kolmogorov Complexity , 2007, ICALP.
[12] Rolf Herken,et al. The Universal Turing Machine: A Half-Century Survey , 1992 .
[13] Santiago Figueira,et al. An example of a computable absolutely normal number , 2002, Theor. Comput. Sci..
[14] Hector Zenil. Randomness Through Computation: Some Answers, More Questions , 2011 .
[15] Rodney G. Downey,et al. Kolmogorov Complexity and Solovay Functions , 2009, STACS.
[16] Claus-Peter Schnorr,et al. Endliche Automaten und Zufallsfolgen , 1972, Acta Informatica.
[17] Wolfgang Merkle,et al. Time-Bounded Kolmogorov Complexity and Solovay Functions , 2009, Theory of Computing Systems.
[18] Nikolai K. Vereshchagin,et al. Limit Complexities Revisited , 2009, Theory of Computing Systems.
[19] L. Feiner,et al. The strong homogeneity conjecture , 1970, Journal of Symbolic Logic.
[20] S. Barry Cooper. A Note on Normal Numbers , 2013 .
[21] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit , 1971 .
[22] Jack H. Lutz,et al. Effective Strong Dimension, Algorithmic Information, and Computational Complexity , 2002, ArXiv.
[23] Theodore A. Slaman,et al. The Density of Infima in the Recursively Enumerable Degrees , 1991, Ann. Pure Appl. Log..
[24] Leonid A. Levin,et al. Some theorems on the algorithmic approach to probability theory and information theory: (1971 Dissertation directed by A.N. Kolmogorov) , 2010, Ann. Pure Appl. Log..
[25] R A Shore. The homogeneity conjecture. , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[26] S. Barry Cooper. Minimal Pairs and High Recursively Enumerable Degrees , 1974, J. Symb. Log..
[27] A. M. Turing,et al. Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.
[28] Gregory J. Chaitin. Information-Theoretic Characterizations of Recursive Infinite Strings , 1976, Theor. Comput. Sci..
[29] Emil L. Post,et al. The Upper Semi-Lattice of Degrees of Recursive Unsolvability , 1954 .
[30] Jörg Flum,et al. Bounded fixed-parameter tractability and reducibility , 2007, Ann. Pure Appl. Log..
[31] S. G. Simpson. Medvedev degrees of two-dimensional subshifts of finite type , 2012, Ergodic Theory and Dynamical Systems.
[32] P. Levy. Théorie de l'addition des variables aléatoires , 1955 .
[33] Marcia J. Groszek,et al. Independence results on the global structure of the Turing degrees , 1983 .
[34] Andrej Muchnik,et al. Mathematical Metaphysics of Randomness , 1998, Theor. Comput. Sci..
[35] Claus-Peter Schnorr,et al. A unified approach to the definition of random sequences , 1971, Mathematical systems theory.
[36] Peter A. Cholak,et al. STRONG JUMP-TRACEABILITY I : THE COMPUTABLY ENUMERABLE CASE , 2008 .
[37] Gregory J. Chaitin,et al. A recent technical report , 1974, SIGA.
[38] Chris J. Conidis. A real of strictly positive effective packing dimension that does not compute a real of effective packing dimension one , 2012, The Journal of Symbolic Logic.
[39] ANUEL,et al. The Decidability of the Existential Theory of the Poset of Recursively Enumerable Degrees with Jump Relations , 1998 .
[40] Santiago Figueira,et al. Turing's unpublished algorithm for normal numbers , 2007, Theor. Comput. Sci..
[41] P. Erdös,et al. Note on normal numbers , 1946 .
[42] A. Nies,et al. Lowness and Π 0 2 Nullsets , 2006 .
[43] Alistair H. Lachlan. Uniform Enumeration Operations , 1975, J. Symb. Log..
[44] Y. Bugeaud. Nombres de Liouville et nombres normaux , 2002 .
[45] Joseph S. Miller,et al. The K-Degrees, Low for K Degrees, and Weakly Low for K Sets , 2009, Notre Dame J. Formal Log..
[46] Leo Harrington,et al. On the Definability of the double jump in the computably Enumerable Sets , 2002, J. Math. Log..
[47] R. Soare,et al. Not every finite lattice is embeddable in the recursively enumerable degrees , 1980 .
[48] A. Nies,et al. Interpretability and Definability in the Recursively Enumerable Degrees , 1998 .
[49] Joseph S. Miller. Extracting information is hard: A Turing degree of non-integral effective Hausdorff dimension , 2011 .
[50] Emil L. Post. Recursively enumerable sets of positive integers and their decision problems , 1944 .
[51] V. Becher,et al. From index sets to randomness in ∅n: random reals and possibly infinite computations part II , 2009, The Journal of Symbolic Logic.
[52] Martin Strauss. Normal Numbers and Sources for BPP , 1995, STACS.
[53] Richard A. Shore,et al. On homogeneity and definability in the first-order theory of the Turing degrees , 1982, Journal of Symbolic Logic.
[54] Richard A. Shore,et al. Defining the Turing Jump , 1999 .
[55] Symbolic dynamics , 2008, Scholarpedia.
[56] Donald A. Martin,et al. Classes of Recursively Enumerable Sets and Degrees of Unsolvability , 1966 .
[57] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[58] Jean-Luc Ville. Étude critique de la notion de collectif , 1939 .
[59] R. Soare,et al. Post's program and incomplete recursively enumerable sets. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[60] Wolfgang Merkle,et al. Kolmogorov Complexity and the Recursion Theorem , 2006, STACS.
[61] Marie Ferbus-Zanda,et al. Is Randomness native to Computer Science? Ten Years Later , 2012 .
[62] Rolf Herken,et al. The universal Turing machine (2nd ed.): a half-century survey , 1995 .
[63] Jan Reimann,et al. Effectively closed sets of measures and randomness , 2008, Ann. Pure Appl. Log..
[64] B. Kjos-Hanssen,et al. Kolmogorov complexity and strong approximation of Brownian motion , 2014, 1408.2278.
[65] A. Church. On the concept of a random sequence , 1940 .
[66] S. Barry Cooper,et al. Minimal degrees and the jump operator , 1973, Journal of Symbolic Logic.
[67] A. Nies. Computability and randomness , 2009 .
[68] Robert W. Robinson. Jump Restricted Interpolation in the Recursively Enumerable Degrees , 1971 .
[69] Antonín Kucera,et al. Randomness and Recursive Enumerability , 2001, SIAM J. Comput..
[70] Mark Braverman,et al. Non-computable Julia sets , 2004, ArXiv.
[71] Alan M. Turing,et al. Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.
[73] Rodney G. Downey,et al. There is no degree invariant half-jump , 1997 .
[74] Lance Fortnow,et al. Extracting Kolmogorov complexity with applications to dimension zero-one laws , 2006, Inf. Comput..
[75] A. Nies. Lowness properties and randomness , 2005 .
[76] S. S. Pillai,et al. On normal numbers , 1939 .
[77] R. Soare. Recursively enumerable sets and degrees , 1987 .
[78] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[79] Rachel Epstein,et al. The nonlow computably enumerable degrees are not invariant in ℰ , 2012 .
[80] Rodney G. Downey,et al. Randomness, Computation and Mathematics , 2012, CiE.
[81] Sebastiaan Terwijn,et al. Computational randomness and lowness* , 2001, Journal of Symbolic Logic.
[82] W. Fouché. The Descriptive Complexity of Brownian Motion , 2000 .
[83] Alistair H. Lachlan,et al. Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .
[84] Edward R. Griffor. Handbook of Computability Theory , 1999, Handbook of Computability Theory.
[85] Y. Bugeaud. Distribution Modulo One and Diophantine Approximation: References , 2012 .
[86] S. G. Simpson. MASS PROBLEMS ASSOCIATED WITH EFFECTIVELY CLOSED SETS , 2011 .
[87] George Barmpalias,et al. The importance of Π1 0 classes in effective randomness , 2010, The Journal of Symbolic Logic.
[88] Richard Friedberg,et al. A criterion for completeness of degrees of unsolvability , 1957, Journal of Symbolic Logic.
[89] W. Sierpinski,et al. Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d'une tel nombre , 1917 .
[90] Liang Yu,et al. On initial segment complexity and degrees of randomness , 2008 .
[91] David Marker. Degrees of Models of True Arithmetic , 1982 .
[92] R. Mises. Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .
[93] André Nies,et al. Interactions of Computability and Randomness , 2011 .
[94] Theodore A. Slaman,et al. Definable functions on degrees , 1988 .
[95] Rodney G. Downey,et al. FIVE LECTURES ON ALGORITHMIC RANDOMNESS , 2008 .
[96] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[97] Erhard Tornier,et al. Grundlagen der Wahrscheinlichkeitsrechnung , 1933 .
[98] Jeremy Avigad,et al. The metamathematics of ergodic theory , 2009, Ann. Pure Appl. Log..
[99] Stephen G. Simpson,et al. Symbolic Dynamics: Entropy = Dimension = Complexity , 2015, Theory of Computing Systems.
[100] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[101] C. Spector. On Degrees of Recursive Unsolvability , 1956 .
[102] Martin D. Davis,et al. Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.
[103] Willem L. Fouché,et al. Dynamics of a generic Brownian motion: Recursive aspects , 2008, Theor. Comput. Sci..
[104] André Nies,et al. Calibrating Randomness , 2006, Bull. Symb. Log..
[105] Péter Gács,et al. Randomness on Computable Probability Spaces - A Dynamical Point of View , 2009, STACS.
[106] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[107] P. Odifreddi. Classical recursion theory , 1989 .
[108] Manuel Lerman,et al. A Finite Lattice without Critical Triple that cannot be Embedded into the Enumerable Turing Degrees , 1997, Ann. Pure Appl. Log..
[109] Peter A. Cholak,et al. On the orbits of computably enumerable sets , 2006, 0705.0125.
[110] Alexander Shen,et al. Ergodic-Type Characterizations of Algorithmic Randomness , 2010, CiE.
[111] Claus-Peter Schnorr,et al. Zufälligkeit und Wahrscheinlichkeit - Eine algorithmische Begründung der Wahrscheinlichkeitstheorie , 1971, Lecture Notes in Mathematics.
[112] Verónica Becher,et al. Turing's Normal Numbers: Towards Randomness , 2012, CiE.
[113] Manuel Lerman,et al. Degrees of Unsolvability: Local and Global Theory , 1983 .
[114] Elvira Mayordomo,et al. A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..
[115] Manuel Lerman,et al. The Decidability of the Existential Theory of the Poset of Recursively Enumerable Degrees with Jump Relations , 1996 .
[116] Jack H. Lutz,et al. Finite-State Dimension , 2001, ICALP.
[117] R. Friedberg,et al. TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.
[118] Denis R. Hirschfeldt,et al. Undecidability and 1-types in intervals of the computably enumerable degrees , 2000, Ann. Pure Appl. Log..
[119] Péter Gács,et al. On the relation between descriptional complexity and algorithmic probability , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[120] Rodney G. Downey. Lattice Nonembeddings and Initial Segments of the Recursively Enumerable Degrees , 1990, Ann. Pure Appl. Log..
[121] Richard A. Shore,et al. Lattice embeddings below a nonlow2 recursively enumerable degree , 1996 .
[122] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[123] Claude E. Shannon,et al. Computability by Probabilistic Machines , 1970 .
[124] Tom Meyerovitch,et al. A Characterization of the Entropies of Multidimensional Shifts of Finite Type , 2007, math/0703206.
[125] Marius Zimand,et al. Two Sources Are Better than One for Increasing the Kolmogorov Complexity of Infinite Sequences , 2007, Theory of Computing Systems.
[126] Aaron D. Wyner,et al. Computability by Probabilistic Machines , 1993 .
[127] N. V. Vinodchandran,et al. Entropy rates and finite-state dimension , 2005, Theor. Comput. Sci..
[128] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[129] André Nies,et al. Randomness, relativization and Turing degrees , 2005, J. Symb. Log..
[130] Anil Nerode,et al. Effective dimension of points visited by Brownian motion , 2009, Theor. Comput. Sci..
[131] B. M. Fulk. MATH , 1992 .
[132] Theodore A. Slaman,et al. GLOBAL PROPERTIES OF THE TURING DEGREES AND THE TURING JUMP , 2007 .
[133] M. Borel. Les probabilités dénombrables et leurs applications arithmétiques , 1909 .
[134] F. e.. Calcul des Probabilités , 1889, Nature.
[135] Mark Braverman,et al. Computability of Julia Sets , 2009, Algorithms and computation in mathematics.
[136] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.