Computability theory, algorithmic randomness and Turing's anticipation

This article looks at the applications of Turing's Legacy in computation, particularly to the theory of algorithmic randomness, where classical mathematical concepts such as measure could be made computational. It also traces Turing's anticipation of this theory in an early manuscript. Beginning with the work of Church, Kleene, Post and particularly Turing, es- pecially in the magic year of 1936, we know what computation means. Turing's theory has substantially developed under the names of recursion theory and computability theory. Turing's work can be seen as perhaps the high point in the conuence of ideas in 1936. This paper, and Turing's 1939 paper (141) (based on his PhD Thesis of the same name), laid solid foundations to the pure theory of computation, now called computability or recursion theory. This article gives a brief history of some of the main lines of investigation in computability theory, a major part of Turing's Legacy. Computability theory and its tools for classifying computational tasks have seen applications in many areas such as analysis, algebra, logic, computer science and the like. Such applications will be discussed in articles in this volume. The theory even has applications into what is thought of as proof theory in what is called reverse mathematics. Reverse mathematics attempts to claibrate the logi- cal strength of theorems of mathematics according to calibrations of comprehen- sion axioms in second order mathematics. Generally speaking most separations, that is, proofs that a theorem is true in one system but not another, are per- formed in normal \!" models rather than nonstandard ones. Hence, egnerally ? Research supported by the Marsden Fund of New Zealand. Some of the work in this paper was done whilst the author was a visiting fellow at the Isaac Newton Institute, Cambridge, UK, as part of the Alan Turing \Semantics and Syntax" programme, in 2012. Some of this work was presented at CiE 2012 in Becher (7) and Downey (42). Many thanks to Veronica Becher, Carl Jockusch, Paul Schupp, Ted Slaman and Richard Shore for numerous corrections.

[1]  Peter Cholak Automorphisms of the lattice of recursively enumerable sets , 1995, Memoirs of the American Mathematical Society.

[2]  Alistair H. Lachlan Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .

[3]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[4]  Paul M. B. Vitányi,et al.  Information Distance in Multiples , 2009, IEEE Transactions on Information Theory.

[5]  Marie Ferbus-Zanda,et al.  Is Randomness "Native" to Computer Science? , 2008, Bull. EATCS.

[6]  Richard A. Shore,et al.  A non-inversion theorem for the jump operator , 1988, Ann. Pure Appl. Log..

[7]  C. E. M. Yates A Minimal Pair of Recursively Enumerable Degrees , 1966, J. Symb. Log..

[8]  R. Shore The recursively enumerable α-degrees are dense , 1976 .

[9]  H. Lebesgue Sur certaines démonstrations d'existence , 1917 .

[10]  Ronald de Wolf,et al.  Algorithmic Clustering of Music Based on String Compression , 2004, Computer Music Journal.

[11]  Wolfgang Merkle,et al.  Reconciling Data Compression and Kolmogorov Complexity , 2007, ICALP.

[12]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[13]  Santiago Figueira,et al.  An example of a computable absolutely normal number , 2002, Theor. Comput. Sci..

[14]  Hector Zenil Randomness Through Computation: Some Answers, More Questions , 2011 .

[15]  Rodney G. Downey,et al.  Kolmogorov Complexity and Solovay Functions , 2009, STACS.

[16]  Claus-Peter Schnorr,et al.  Endliche Automaten und Zufallsfolgen , 1972, Acta Informatica.

[17]  Wolfgang Merkle,et al.  Time-Bounded Kolmogorov Complexity and Solovay Functions , 2009, Theory of Computing Systems.

[18]  Nikolai K. Vereshchagin,et al.  Limit Complexities Revisited , 2009, Theory of Computing Systems.

[19]  L. Feiner,et al.  The strong homogeneity conjecture , 1970, Journal of Symbolic Logic.

[20]  S. Barry Cooper A Note on Normal Numbers , 2013 .

[21]  C. Schnorr Zufälligkeit und Wahrscheinlichkeit , 1971 .

[22]  Jack H. Lutz,et al.  Effective Strong Dimension, Algorithmic Information, and Computational Complexity , 2002, ArXiv.

[23]  Theodore A. Slaman,et al.  The Density of Infima in the Recursively Enumerable Degrees , 1991, Ann. Pure Appl. Log..

[24]  Leonid A. Levin,et al.  Some theorems on the algorithmic approach to probability theory and information theory: (1971 Dissertation directed by A.N. Kolmogorov) , 2010, Ann. Pure Appl. Log..

[25]  R A Shore The homogeneity conjecture. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Barry Cooper Minimal Pairs and High Recursively Enumerable Degrees , 1974, J. Symb. Log..

[27]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[28]  Gregory J. Chaitin Information-Theoretic Characterizations of Recursive Infinite Strings , 1976, Theor. Comput. Sci..

[29]  Emil L. Post,et al.  The Upper Semi-Lattice of Degrees of Recursive Unsolvability , 1954 .

[30]  Jörg Flum,et al.  Bounded fixed-parameter tractability and reducibility , 2007, Ann. Pure Appl. Log..

[31]  S. G. Simpson Medvedev degrees of two-dimensional subshifts of finite type , 2012, Ergodic Theory and Dynamical Systems.

[32]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[33]  Marcia J. Groszek,et al.  Independence results on the global structure of the Turing degrees , 1983 .

[34]  Andrej Muchnik,et al.  Mathematical Metaphysics of Randomness , 1998, Theor. Comput. Sci..

[35]  Claus-Peter Schnorr,et al.  A unified approach to the definition of random sequences , 1971, Mathematical systems theory.

[36]  Peter A. Cholak,et al.  STRONG JUMP-TRACEABILITY I : THE COMPUTABLY ENUMERABLE CASE , 2008 .

[37]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[38]  Chris J. Conidis A real of strictly positive effective packing dimension that does not compute a real of effective packing dimension one , 2012, The Journal of Symbolic Logic.

[39]  ANUEL,et al.  The Decidability of the Existential Theory of the Poset of Recursively Enumerable Degrees with Jump Relations , 1998 .

[40]  Santiago Figueira,et al.  Turing's unpublished algorithm for normal numbers , 2007, Theor. Comput. Sci..

[41]  P. Erdös,et al.  Note on normal numbers , 1946 .

[42]  A. Nies,et al.  Lowness and Π 0 2 Nullsets , 2006 .

[43]  Alistair H. Lachlan Uniform Enumeration Operations , 1975, J. Symb. Log..

[44]  Y. Bugeaud Nombres de Liouville et nombres normaux , 2002 .

[45]  Joseph S. Miller,et al.  The K-Degrees, Low for K Degrees, and Weakly Low for K Sets , 2009, Notre Dame J. Formal Log..

[46]  Leo Harrington,et al.  On the Definability of the double jump in the computably Enumerable Sets , 2002, J. Math. Log..

[47]  R. Soare,et al.  Not every finite lattice is embeddable in the recursively enumerable degrees , 1980 .

[48]  A. Nies,et al.  Interpretability and Definability in the Recursively Enumerable Degrees , 1998 .

[49]  Joseph S. Miller Extracting information is hard: A Turing degree of non-integral effective Hausdorff dimension , 2011 .

[50]  Emil L. Post Recursively enumerable sets of positive integers and their decision problems , 1944 .

[51]  V. Becher,et al.  From index sets to randomness in ∅n: random reals and possibly infinite computations part II , 2009, The Journal of Symbolic Logic.

[52]  Martin Strauss Normal Numbers and Sources for BPP , 1995, STACS.

[53]  Richard A. Shore,et al.  On homogeneity and definability in the first-order theory of the Turing degrees , 1982, Journal of Symbolic Logic.

[54]  Richard A. Shore,et al.  Defining the Turing Jump , 1999 .

[55]  Symbolic dynamics , 2008, Scholarpedia.

[56]  Donald A. Martin,et al.  Classes of Recursively Enumerable Sets and Degrees of Unsolvability , 1966 .

[57]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[58]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[59]  R. Soare,et al.  Post's program and incomplete recursively enumerable sets. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Wolfgang Merkle,et al.  Kolmogorov Complexity and the Recursion Theorem , 2006, STACS.

[61]  Marie Ferbus-Zanda,et al.  Is Randomness native to Computer Science? Ten Years Later , 2012 .

[62]  Rolf Herken,et al.  The universal Turing machine (2nd ed.): a half-century survey , 1995 .

[63]  Jan Reimann,et al.  Effectively closed sets of measures and randomness , 2008, Ann. Pure Appl. Log..

[64]  B. Kjos-Hanssen,et al.  Kolmogorov complexity and strong approximation of Brownian motion , 2014, 1408.2278.

[65]  A. Church On the concept of a random sequence , 1940 .

[66]  S. Barry Cooper,et al.  Minimal degrees and the jump operator , 1973, Journal of Symbolic Logic.

[67]  A. Nies Computability and randomness , 2009 .

[68]  Robert W. Robinson Jump Restricted Interpolation in the Recursively Enumerable Degrees , 1971 .

[69]  Antonín Kucera,et al.  Randomness and Recursive Enumerability , 2001, SIAM J. Comput..

[70]  Mark Braverman,et al.  Non-computable Julia sets , 2004, ArXiv.

[71]  Alan M. Turing,et al.  Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.

[73]  Rodney G. Downey,et al.  There is no degree invariant half-jump , 1997 .

[74]  Lance Fortnow,et al.  Extracting Kolmogorov complexity with applications to dimension zero-one laws , 2006, Inf. Comput..

[75]  A. Nies Lowness properties and randomness , 2005 .

[76]  S. S. Pillai,et al.  On normal numbers , 1939 .

[77]  R. Soare Recursively enumerable sets and degrees , 1987 .

[78]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[79]  Rachel Epstein,et al.  The nonlow computably enumerable degrees are not invariant in ℰ , 2012 .

[80]  Rodney G. Downey,et al.  Randomness, Computation and Mathematics , 2012, CiE.

[81]  Sebastiaan Terwijn,et al.  Computational randomness and lowness* , 2001, Journal of Symbolic Logic.

[82]  W. Fouché The Descriptive Complexity of Brownian Motion , 2000 .

[83]  Alistair H. Lachlan,et al.  Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .

[84]  Edward R. Griffor Handbook of Computability Theory , 1999, Handbook of Computability Theory.

[85]  Y. Bugeaud Distribution Modulo One and Diophantine Approximation: References , 2012 .

[86]  S. G. Simpson MASS PROBLEMS ASSOCIATED WITH EFFECTIVELY CLOSED SETS , 2011 .

[87]  George Barmpalias,et al.  The importance of Π1 0 classes in effective randomness , 2010, The Journal of Symbolic Logic.

[88]  Richard Friedberg,et al.  A criterion for completeness of degrees of unsolvability , 1957, Journal of Symbolic Logic.

[89]  W. Sierpinski,et al.  Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d'une tel nombre , 1917 .

[90]  Liang Yu,et al.  On initial segment complexity and degrees of randomness , 2008 .

[91]  David Marker Degrees of Models of True Arithmetic , 1982 .

[92]  R. Mises Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .

[93]  André Nies,et al.  Interactions of Computability and Randomness , 2011 .

[94]  Theodore A. Slaman,et al.  Definable functions on degrees , 1988 .

[95]  Rodney G. Downey,et al.  FIVE LECTURES ON ALGORITHMIC RANDOMNESS , 2008 .

[96]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[97]  Erhard Tornier,et al.  Grundlagen der Wahrscheinlichkeitsrechnung , 1933 .

[98]  Jeremy Avigad,et al.  The metamathematics of ergodic theory , 2009, Ann. Pure Appl. Log..

[99]  Stephen G. Simpson,et al.  Symbolic Dynamics: Entropy = Dimension = Complexity , 2015, Theory of Computing Systems.

[100]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[101]  C. Spector On Degrees of Recursive Unsolvability , 1956 .

[102]  Martin D. Davis,et al.  Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.

[103]  Willem L. Fouché,et al.  Dynamics of a generic Brownian motion: Recursive aspects , 2008, Theor. Comput. Sci..

[104]  André Nies,et al.  Calibrating Randomness , 2006, Bull. Symb. Log..

[105]  Péter Gács,et al.  Randomness on Computable Probability Spaces - A Dynamical Point of View , 2009, STACS.

[106]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[107]  P. Odifreddi Classical recursion theory , 1989 .

[108]  Manuel Lerman,et al.  A Finite Lattice without Critical Triple that cannot be Embedded into the Enumerable Turing Degrees , 1997, Ann. Pure Appl. Log..

[109]  Peter A. Cholak,et al.  On the orbits of computably enumerable sets , 2006, 0705.0125.

[110]  Alexander Shen,et al.  Ergodic-Type Characterizations of Algorithmic Randomness , 2010, CiE.

[111]  Claus-Peter Schnorr,et al.  Zufälligkeit und Wahrscheinlichkeit - Eine algorithmische Begründung der Wahrscheinlichkeitstheorie , 1971, Lecture Notes in Mathematics.

[112]  Verónica Becher,et al.  Turing's Normal Numbers: Towards Randomness , 2012, CiE.

[113]  Manuel Lerman,et al.  Degrees of Unsolvability: Local and Global Theory , 1983 .

[114]  Elvira Mayordomo,et al.  A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..

[115]  Manuel Lerman,et al.  The Decidability of the Existential Theory of the Poset of Recursively Enumerable Degrees with Jump Relations , 1996 .

[116]  Jack H. Lutz,et al.  Finite-State Dimension , 2001, ICALP.

[117]  R. Friedberg,et al.  TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Denis R. Hirschfeldt,et al.  Undecidability and 1-types in intervals of the computably enumerable degrees , 2000, Ann. Pure Appl. Log..

[119]  Péter Gács,et al.  On the relation between descriptional complexity and algorithmic probability , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[120]  Rodney G. Downey Lattice Nonembeddings and Initial Segments of the Recursively Enumerable Degrees , 1990, Ann. Pure Appl. Log..

[121]  Richard A. Shore,et al.  Lattice embeddings below a nonlow2 recursively enumerable degree , 1996 .

[122]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[123]  Claude E. Shannon,et al.  Computability by Probabilistic Machines , 1970 .

[124]  Tom Meyerovitch,et al.  A Characterization of the Entropies of Multidimensional Shifts of Finite Type , 2007, math/0703206.

[125]  Marius Zimand,et al.  Two Sources Are Better than One for Increasing the Kolmogorov Complexity of Infinite Sequences , 2007, Theory of Computing Systems.

[126]  Aaron D. Wyner,et al.  Computability by Probabilistic Machines , 1993 .

[127]  N. V. Vinodchandran,et al.  Entropy rates and finite-state dimension , 2005, Theor. Comput. Sci..

[128]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[129]  André Nies,et al.  Randomness, relativization and Turing degrees , 2005, J. Symb. Log..

[130]  Anil Nerode,et al.  Effective dimension of points visited by Brownian motion , 2009, Theor. Comput. Sci..

[131]  B. M. Fulk MATH , 1992 .

[132]  Theodore A. Slaman,et al.  GLOBAL PROPERTIES OF THE TURING DEGREES AND THE TURING JUMP , 2007 .

[133]  M. Borel Les probabilités dénombrables et leurs applications arithmétiques , 1909 .

[134]  F. e. Calcul des Probabilités , 1889, Nature.

[135]  Mark Braverman,et al.  Computability of Julia Sets , 2009, Algorithms and computation in mathematics.

[136]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.