Numerical computation of two-loop box diagrams with masses
暂无分享,去创建一个
Elise de Doncker | Yoshimitsu Shimizu | Junpei Fujimoto | Fukuko Yuasa | Tadashi Ishikawa | K. Kato | Nobuyuki Hamaguchi | Yoshimasa Kurihara | J. Fujimoto | Y. Kurihara | K. Kato | Y. Shimizu | F. Yuasa | E. Doncker | N. Hamaguchi | T. Ishikawa
[1] J. Fujimoto,et al. GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks , 2003, hep-ph/0308080.
[2] J. Vermaseren,et al. New algorithms for one-loop integrals , 1990 .
[3] Yoshimitsu Shimizu,et al. Numerical Approach to One-Loop Integrals , 1992 .
[4] N. Greiner,et al. Automated one-loop calculations with GoSam , 2011, 1111.2034.
[5] Y. Kurihara,et al. Numerical approach to multi-loop integrals , 2012, 1201.6127.
[6] F. Yuasa,et al. Toward Automatic Regularization for Feynman Loop Integrals in Perturbative Quantum Field Theory , 2012 .
[7] Fukuko Yuasa,et al. Regularization of IR divergent loop integrals , 2012 .
[8] Fukuko Yuasa. Precise Numerical Results of IR-vertex and box integration with Extrapolation Method , 2009 .
[9] S. Weinzierl,et al. Multiparton NLO corrections by numerical methods , 2011, 1112.3521.
[10] Robert Piessens,et al. Quadpack: A Subroutine Package for Automatic Integration , 2011 .
[11] Paul Roman,et al. The Analytic S-Matrix , 1967 .
[12] G. Passarino,et al. Algebraic-numerical evaluation of Feynman diagrams: two-loop self-energies , 2001, hep-ph/0112004.
[13] D. Soper,et al. Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.
[14] G. Ossola,et al. Tensorial reconstruction at the integrand level , 2010, 1008.2441.
[15] Shujun Li,et al. On Iterated Numerical Integration , 2005, International Conference on Computational Science.
[16] J. Fujimoto,et al. Numerical Evaluation of Feynman Integrals by a Direct Computation Method , 2008 .
[17] P. Wynn,et al. On a Device for Computing the e m (S n ) Transformation , 1956 .
[18] Rikkert Frederix,et al. Automation of one-loop QCD computations , 2011, 1103.0621.
[19] S. Kawabata,et al. A new version of the multi-dimensional integration and event generation package BASES/SPRING , 1995 .
[20] Gudrun Heinrich,et al. Golem95C: A library for one-loop integrals with complex masses , 2011, Comput. Phys. Commun..
[21] Nakanish. Graph Theory and Feynman Integrals , 1971 .
[22] S. Laporta,et al. difference equations , 2001 .
[23] Yoshimitsu Shimizu,et al. Radiative Corrections to e+e− Reactions in Electroweak Theory , 1990 .
[24] N. Greiner,et al. GoSam: A program for automated one-loop calculations , 2011, 1111.6534.
[25] G. Tiktopoulos. HIGH-ENERGY BEHAVIOR OF FEYNMAN AMPLITUDES , 1963 .
[26] B. Burrows,et al. Lower bounds for quartic anharmonic and double‐well potentials , 1993 .
[27] S. Bauberger,et al. Simple one-dimensional integral representations for two-loop self-energies: the master diagram , 1995 .
[28] C. Anastasiou,et al. Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007, hep-ph/0703282.
[29] Toyohisa Kaneko,et al. Numerical contour integration for loop integrals , 2006, Comput. Phys. Commun..
[30] E. Doncker,et al. Loop integration results using numerical extrapolation for a non-scalar integral , 2004, hep-ph/0405098.
[31] Nobuyuki Hamaguchi,et al. Numerical precision control and GRACE , 2006 .
[32] Shujun Li,et al. Regularization and Extrapolation Methods for Infrared Divergent Loop Integrals , 2005, International Conference on Computational Science.
[33] D. Maitre,et al. An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.
[34] F. Yuasa,et al. Parallel computation of Feynman loop integrals , 2012 .
[35] Elise de Doncker,et al. Computation of loop integrals using extrapolation , 2004 .
[36] T. Gleisberg,et al. Next-to-Leading Order QCD Predictions for W+3-Jet Distributions at Hadron Colliders , 2009, 0907.1984.
[37] Junpei Fujimoto,et al. New implementation of the sector decomposition on FORM , 2009, 0902.2656.
[38] T. Hahn,et al. Automatic loop calculations with FeynArts, FormCalc, and LoopTools , 2000 .
[39] D. Kreimer,et al. The master two-loop two-point function. The general case , 1991 .
[40] G. Zanderighi,et al. On the numerical evaluation of one-loop amplitudes: the gluonic case , 2008, 0805.2152.
[41] D. Shanks. Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .
[42] Elise de Doncker,et al. Transformation, Reduction and Extrapolation Techniques for Feynman Loop Integrals , 2010, ICCSA.
[43] T. Binoth,et al. golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs , 2008, Comput. Phys. Commun..
[44] Elise de Doncker,et al. Quadpack computation of Feynman loop integrals , 2012, J. Comput. Sci..
[45] G. Passarino,et al. Two-Loop Vertices in Quantum Field Theory: Infrared Convergent Scalar Configurations , 2003, hep-ph/0311186.
[46] Elise de Doncker,et al. On a Numerical Evaluation of Loop Integrals , 2003 .
[47] R. Pittau,et al. Automated one-loop calculations: a proof of concept , 2009, 0903.4665.
[48] T. Sasaki,et al. How to Calculate One-Loop Diagrams , 1989 .
[49] J. FUJIMOTO,et al. NUMERICAL APPROACH TO TWO-LOOP THREE POINT FUNCTIONS WITH MASSES , 1995 .
[50] P. Wynn,et al. On the Convergence and Stability of the Epsilon Algorithm , 1966 .