Global Well-Posedness of 2D Compressible Navier–Stokes Equations with Large Data and Vacuum

[1]  Yi Wang,et al.  Vacuum Behaviors around Rarefaction Waves to 1D Compressible Navier-Stokes Equations with Density-Dependent Viscosity , 2011, SIAM J. Math. Anal..

[2]  Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum , 2012 .

[3]  Jing Li,et al.  On the motion of three-dimensional compressible isentropic flows with large external potential forces and vacuum , 2011, 1111.2114.

[4]  Changjiang Zhu,et al.  Global classical large solutions to 1D compressible Navier–Stokes equations with density-dependent viscosity and vacuum , 2011 .

[5]  Jing Li,et al.  Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier–Stokes System with Vacuum and Large Oscillations , 2011, 1107.4655.

[6]  Ting Zhang,et al.  A blow-up criterion for two dimensional compressible viscous heat-conductive flows , 2011, 1107.4663.

[7]  Lei Yao,et al.  Global classical spherically symmetric solution to compressible Navier-Stokes equations with large initial data and vacuum , 2011 .

[8]  Chao Wang,et al.  A Beale–Kato–Majda Criterion for Three Dimensional Compressible Viscous Heat-Conductive Flows , 2011 .

[9]  Zhouping Xin,et al.  Blowup Criterion for Viscous Baratropic Flows with Vacuum States , 2010, 1004.5469.

[10]  Jing Li,et al.  Serrin-Type Criterion for the Three-Dimensional Viscous Compressible Flows , 2010, SIAM J. Math. Anal..

[11]  Zhouping Xin,et al.  Global well‐posedness of classical solutions with large oscillations and vacuum to the three‐dimensional isentropic compressible Navier‐Stokes equations , 2010, 1004.4749.

[12]  Z. Xin,et al.  Stability of Rarefaction Waves to the 1D Compressible Navier–Stokes Equations with Density-Dependent Viscosity , 2010, 1004.0036.

[13]  Chao Wang,et al.  A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations , 2010, 1001.1247.

[14]  Zhouping Xin,et al.  A blow-up criterion for classical solutions to the compressible Navier-Stokes equations , 2009, 0903.3090.

[15]  Ting Zhang,et al.  Compressible Flows with a Density-Dependent Viscosity Coefficient , 2009, SIAM J. Math. Anal..

[16]  Zhouping Xin,et al.  The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients , 2008 .

[17]  O. Rozanova Blow up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations , 2008, 0804.1549.

[18]  Zhouping Xin,et al.  Vanishing of Vacuum States and Blow-up Phenomena of the Compressible Navier-Stokes Equations , 2008, 0811.3818.

[19]  Song Jiang,et al.  BLOW-UP CRITERIA FOR THE NAVIER–STOKES EQUATIONS OF COMPRESSIBLE FLUIDS , 2008 .

[20]  Quansen Jiu,et al.  Spherically Symmetric Isentropic Compressible Flows with Density-Dependent Viscosity Coefficients , 2008, SIAM J. Math. Anal..

[21]  Antoine Mellet,et al.  Existence and Uniqueness of Global Strong Solutions for One-Dimensional Compressible Navier-Stokes Equations , 2008, SIAM J. Math. Anal..

[22]  Antoine Mellet,et al.  On the Barotropic Compressible Navier–Stokes Equations , 2007 .

[23]  D. Bresch,et al.  On compressible Navier-Stokes equations with density dependent viscosities in bounded domains , 2007 .

[24]  Didier Bresch,et al.  On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models , 2006 .

[25]  David Hoff,et al.  Compressible Flow in a Half-Space with Navier Boundary Conditions , 2005 .

[26]  Hyunseok Kim,et al.  Existence results for viscous polytropic fluids with vacuum , 2006 .

[27]  Hyunseok Kim,et al.  On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities , 2006 .

[28]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[29]  Hi Jun Choe,et al.  Unique solvability of the initial boundary value problems for compressible viscous fluids , 2004 .

[30]  A. Novotný,et al.  Introduction to the Mathematical Theory of Compressible Flow , 2004 .

[31]  A. Zlotnik,et al.  Global properties of solutions to 1D-viscous compressible barotropic fluid equations with density dependent viscosity , 2003 .

[32]  D. Bresch,et al.  Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model , 2003 .

[33]  D. Bresch,et al.  On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems , 2003 .

[34]  T.-P. Liu On the Vacuum State for the Isentropic Gas Dynamics Equations , 2003 .

[35]  Changjiang Zhu,et al.  Compressible Navier–Stokes Equations with Degenerate Viscosity Coefficient and Vacuum , 2002 .

[36]  Changjiang Zhu,et al.  COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY AND VACUUM , 2001 .

[37]  D. Hoff,et al.  Non-Formation of Vacuum States for Compressible Navier–Stokes Equations , 2001 .

[38]  Song Jiang,et al.  On Spherically Symmetric Solutions¶of the Compressible Isentropic Navier–Stokes Equations , 2001 .

[39]  Jean-Frédéric Gerbeau,et al.  Derivation of viscous Saint-Venant system for laminar shallow water , 2001 .

[40]  Raphaël Danchin,et al.  Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .

[41]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[42]  Zhouping Xin,et al.  Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .

[43]  Song Jiang,et al.  Global Smooth Solutions of the Equations of a Viscous, Heat ‐ Conducting, One ‐ Dimensional Gas with Density ‐ Dependent Viscosity , 1998 .

[44]  David Hoff,et al.  Discontinuous Solutions of the Navier-Stokes Equations for Multidimensional Flows of Heat-Conducting Fluids , 1997 .

[45]  Zhouping Xin,et al.  Vacuum states for compressible flow , 1997 .

[46]  Benöit Desjardins Regularity of weak solutions of the compressible isentropic Navier-Stokes equations , 1997 .

[47]  Irene M. Gamba,et al.  A viscous approximation for a 2‐D steady semiconductor or transonic gas dynamic flow: Existence theorem for potential flow , 1996 .

[48]  A. V. Kazhikhov,et al.  On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid , 1995 .

[49]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[50]  Takaaki Nishida,et al.  The initial value problem for the equations of motion of viscous and heat-conductive gases , 1980 .

[51]  A. Tani On the First Initial-Boundary Value Problem of Compressible Viscous Fluid Motion , 1977 .

[52]  V. V. Shelukhin,et al.  Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas: PMM vol. 41, n≗ 2, 1977, pp. 282–291 , 1977 .

[53]  Nobutoshi Itaya On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid , 1971 .

[54]  J. Nash,et al.  Le problème de Cauchy pour les équations différentielles d'un fluide général , 1962 .