The use of atomic layer deposition in advanced nanopatterning.

Atomic layer deposition (ALD) is a method that allows for the deposition of thin films with atomic level control of the thickness and an excellent conformality on 3-dimensional surfaces. In recent years, ALD has been implemented in many applications in microelectronics, for which often a patterned film instead of full area coverage is required. This article reviews several approaches for the patterning of ALD-grown films. In addition to conventional methods relying on etching, there has been much interest in nanopatterning by area-selective ALD. Area-selective approaches can eliminate compatibility issues associated with the use of etchants, lift-off chemicals, or resist films. Moreover, the use of ALD as an enabling technology in advanced nanopatterning methods such as spacer defined double patterning or block copolymer lithography is discussed, as well as the application of selective ALD in self-aligned fabrication schemes.

[1]  Junliang Zhang,et al.  Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis , 2007 .

[2]  M. Ritala,et al.  Passivation of copper surfaces for selective-area ALD using a thiol self-assembled monolayer , 2012 .

[3]  U. Steiner,et al.  Gyroid‐Structured 3D ZnO Networks Made by Atomic Layer Deposition , 2014 .

[4]  Robert M. Wallace,et al.  The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2 , 2011 .

[5]  Vincent Wiaux,et al.  Spacer defined double patterning for (sub-)20nm half pitch single damascene structures , 2011, Advanced Lithography.

[6]  Yan Borodovsky,et al.  Marching to the beat of Moore's Law , 2006, SPIE Advanced Lithography.

[7]  Yueming Hua,et al.  Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography , 2008 .

[8]  H. Koops,et al.  New compound quantum dot materials produced by electron‐beam induced deposition , 1995 .

[9]  Carolyn R. Ellinger,et al.  Metal-oxide thin-film transistors patterned by printing , 2013 .

[10]  Jane P. Chang,et al.  Generation of oxide nanopatterns by combining self-assembly of S-layer proteins and area-selective atomic layer deposition. , 2008, Journal of the American Chemical Society.

[11]  O. Seitz,et al.  Controlling the Atomic Layer Deposition of Titanium Dioxide on Silicon: Dependence on Surface Termination , 2013 .

[12]  M. Halls,et al.  Substrate Selectivity of (tBu-Allyl)Co(CO)3 during Thermal Atomic Layer Deposition of Cobalt , 2012 .

[13]  M. Ritala,et al.  Microcontact Printed RuOx Film as an Activation Layer for Selective-Area Atomic Layer Deposition of Ruthenium , 2012 .

[14]  M. Verheijen,et al.  Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis , 2013 .

[15]  G. Calafiore,et al.  Obtaining nanoimprint template gratings with 10 nm half-pitch by atomic layer deposition enabled spacer double patterning , 2013, Nanotechnology.

[16]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[17]  Brian G. Willis,et al.  Nanometer spaced electrodes using selective area atomic layer deposition , 2007 .

[18]  N. Dasgupta,et al.  Area-selective atomic layer deposition of lead sulfide: nanoscale patterning and DFT simulations. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[19]  Bryan J. Rice,et al.  An analysis of double exposure lithography options , 2008, SPIE Advanced Lithography.

[20]  Gabor A. Somorjai,et al.  Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. , 2009, Journal of the American Chemical Society.

[21]  R. Seisyan Nanolithography in microelectronics: A review , 2011 .

[22]  Phl Peter Notten,et al.  Remote plasma ALD of platinum and platinum oxide films , 2009 .

[23]  W. Kessels,et al.  Nanopatterning by direct-write atomic layer deposition. , 2012, Nanoscale.

[24]  M. Ritala,et al.  Self‐Assembled Octadecyltrimethoxysilane Monolayers Enabling Selective‐Area Atomic Layer Deposition of Iridium , 2006 .

[25]  Stacey F. Bent,et al.  Chemistry for Positive Pattern Transfer Using Area‐Selective Atomic Layer Deposition , 2006 .

[26]  Elina Färm,et al.  Selective-Area Atomic Layer Deposition Using Poly(methyl methacrylate) Films as Mask Layers , 2008 .

[27]  Jiyoung Kim,et al.  Selective atomic layer deposition with electron-beam patterned self-assembled monolayers , 2012 .

[28]  I. Hwang,et al.  Degradation of the Deposition Blocking Layer During Area-Selective Plasma-Enhanced Atomic Layer Deposition of Cobalt , 2010 .

[29]  Hidetami Yaegashi,et al.  Overview: continuous evolution on double-patterning process , 2012, Other Conferences.

[30]  O. Seitz,et al.  Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices. , 2009, Journal of the American Chemical Society.

[31]  Olli Ikkala,et al.  Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self‐Assembled Polymeric Templates , 2007 .

[32]  I. Raaijmakers (Invited) Current and Future Applications of ALD in Micro-Electronics , 2011, ECS Transactions.

[33]  J. Newman,et al.  Mass Transport in Gas‐Diffusion Electrodes: A Diagnostic Tool for Fuel‐Cell Cathodes , 1998 .

[34]  C. Takoudis,et al.  Selective atomic layer deposition of zirconia on copper patterned silicon substrates using ethanol as oxygen source as well as copper reductant , 2014 .

[35]  Se Stephen Potts,et al.  Catalytic combustion reactions during atomic layer deposition of Ru studied using 18O2 isotope labeling , 2013 .

[36]  Clifford L. Henderson,et al.  Area selective atomic layer deposition of titanium dioxide : Effect of precursor chemistry , 2006 .

[37]  Seth B Darling,et al.  A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. , 2011, ACS nano.

[38]  M. Yin,et al.  Recent advances in catalysts for direct methanol fuel cells , 2011 .

[39]  S. Bent,et al.  Growth of Pt nanowires by atomic layer deposition on highly ordered pyrolytic graphite. , 2013, Nano letters.

[40]  S. Bent,et al.  Area Selective Atomic Layer Deposition by Microcontact Printing with a Water-Soluble Polymer , 2010 .

[41]  S. Bent,et al.  Area-Selective Atomic Layer Deposition of Platinum on YSZ Substrates Using Microcontact Printed SAMs , 2007 .

[42]  W. Gladfelter Selective metalization by chemical vapor deposition , 1993 .

[43]  Jin Ho Lee,et al.  Low‐Temperature Growth of SiO2 Films by Plasma‐Enhanced Atomic Layer Deposition , 2005 .

[44]  S. Darling Directing the self-assembly of block copolymers , 2007 .

[45]  Seunghun Hong,et al.  Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition , 2011 .

[46]  V. Paraschiv,et al.  Plasma etching: From micro- to nanoelectronics , 2009 .

[47]  M. Ritala,et al.  Reaction Mechanism Studies on Atomic Layer Deposition of Ruthenium and Platinum , 2003 .

[48]  Mireille Maenhoudt,et al.  Low temperature plasma-enhanced ALD enables cost-effective spacer defined double patterning (SDDP) , 2009, Lithography Asia.

[49]  S. Bent,et al.  Nanopatterning by Area‐Selective Atomic Layer Deposition , 2012 .

[50]  M. Srinivasan,et al.  In situ synthesis of high density sub-50 nm ZnO nanopatterned arrays using diblock copolymer templates. , 2013, ACS applied materials & interfaces.

[51]  Clifford L. Henderson,et al.  Area-Selective ALD of Titanium Dioxide Using Lithographically Defined Poly(methyl methacrylate) Films , 2006 .

[52]  Elina Färm,et al.  Selective-Area Atomic Layer Deposition Using Poly(vinyl pyrrolidone) as a Passivation Layer , 2010 .

[53]  Clifford L. Henderson,et al.  A top surface imaging method using area selective ALD on chemically amplified polymer photoresist films , 2006 .

[54]  Werayut Srituravanich,et al.  Review on Micro- and Nanolithography Techniques and Their Applications , 2012 .

[55]  M. Srinivasan,et al.  Robust, High-Density Zinc Oxide Nanoarrays by Nanoimprint Lithography-Assisted Area-Selective Atomic Layer Deposition , 2012 .

[56]  S. Bent,et al.  Investigation of Self-Assembled Monolayer Resists for Hafnium Dioxide Atomic Layer Deposition , 2005 .

[57]  S. Bent,et al.  Nucleation-Controlled Growth of Nanoparticles by Atomic Layer Deposition , 2012 .

[58]  T. Albrecht,et al.  Rectangular patterns using block copolymer directed assembly for high bit aspect ratio patterned media. , 2011, ACS nano.

[59]  Se‐Hun Kwon,et al.  Highly ordered freestanding titanium oxide nanotube arrays using Si-containing block copolymer lithography and atomic layer deposition , 2013, Nanotechnology.

[60]  W. Kessels,et al.  Catalytic combustion and dehydrogenation reactions during atomic layer deposition of platinum , 2012 .

[61]  M. Geissler,et al.  Patterning: Principles and Some New Developments , 2004 .

[62]  M. Varela,et al.  Low Temperature Epitaxial Oxide Ultrathin Films and Nanostructures by Atomic Layer Deposition , 2012 .

[63]  W. Kessels,et al.  Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition , 2010 .

[64]  Seth B Darling,et al.  Enhanced Lithographic Imaging Layer Meets Semiconductor Manufacturing Specification a Decade Early , 2012, Advanced materials.

[65]  S. Bent,et al.  Area-Selective ALD with Soft Lithographic Methods: Using Self-Assembled Monolayers to Direct Film Deposition , 2009 .

[66]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[67]  Junling Lu,et al.  Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles. , 2010, Angewandte Chemie.

[68]  Manos Mavrikakis,et al.  Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. , 2008, Nature materials.

[69]  Jaegab Lee,et al.  Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness , 2004 .

[70]  M. Sung,et al.  A new patterning method using photocatalytic lithography and selective atomic layer deposition. , 2004, Journal of the American Chemical Society.

[71]  Seunghun Hong,et al.  High Quality Area-Selective Atomic Layer Deposition Co Using Ammonia Gas as a Reactant , 2010 .

[72]  C. Jin,et al.  Graphene annealing: how clean can it be? , 2012, Nano letters.

[73]  S. Nelson,et al.  Oxide Electronics by Spatial Atomic Layer Deposition , 2009, Journal of Display Technology.

[74]  S. Bent,et al.  Spatial control over atomic layer deposition using microcontact-printed resists , 2007 .

[75]  S. Bent,et al.  Area selective molecular layer deposition of polyurea films. , 2013, ACS applied materials & interfaces.

[76]  F. Zaera New Challenges in Heterogeneous Catalysis for the 21st Century , 2012, Catalysis Letters.

[77]  G. Jursich,et al.  On the initial growth of atomic layer deposited TiO2 films on silicon and copper surfaces , 2012 .

[78]  Y. Lei,et al.  Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition , 2014, Nature Communications.

[79]  C. W. Hagen,et al.  Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art , 2009, Nanotechnology.

[80]  M. Verheijen,et al.  Direct-wire atomic layer deposition of high-quality Pt nanostructures : selective growth conditions and seed layer requirements , 2013 .

[81]  S. Nelson,et al.  Thin-film electronics by atomic layer deposition , 2012 .

[82]  M. Karppinen,et al.  Blocking the lateral film growth at the nanoscale in area-selective atomic layer deposition. , 2008, Journal of the American Chemical Society.

[83]  S. Darling,et al.  Nanofabrication with Metallopolymers: Recent Developments and Future Perspectives , 2013 .

[84]  S. Bent,et al.  A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal−Dielectric Patterns , 2014 .

[85]  B. Lee,et al.  Controlled Fabrication of Multiwall Anatase TiO2 Nanotubular Architectures , 2009 .

[86]  Elina Färm,et al.  Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers , 2008 .

[87]  M. Sung,et al.  Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold , 2004 .

[88]  Y. Chabal,et al.  Atomic layer deposition of aluminum oxide on carboxylic acid-terminated self-assembled monolayers. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[89]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[90]  M. Baldo,et al.  Dry Lithography of Large-Area, Thin-Film Organic Semiconductors Using Frozen CO2 Resists , 2012, Advanced materials.

[91]  Soichi Owa,et al.  Immersion lithography: its history, current status and future prospects , 2008, Lithography Asia.

[92]  Paul C. McIntyre,et al.  Self-assembled monolayer resist for atomic layer deposition of HfO2 and ZrO2 high-κ gate dielectrics , 2004 .

[93]  S. Darling,et al.  Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers , 2010, Advanced materials.

[94]  M. Ritala,et al.  Ruthenium Thin Films Grown by Atomic Layer Deposition , 2003 .

[95]  T. Puig,et al.  Integration of atomic layer deposition CeO2 thin films with functional complex oxides and 3D patterns , 2014 .

[96]  P. Beer,et al.  Core@shell bimetallic nanoparticle synthesis via anion coordination. , 2011, Nature chemistry.

[97]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[98]  M. Perego,et al.  The fabrication of tunable nanoporous oxide surfaces by block copolymer lithography and atomic layer deposition , 2011, Nanotechnology.

[99]  P. Avouris,et al.  Graphene field-effect transistors with self-aligned gates , 2010 .

[100]  M. Verheijen,et al.  Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition , 2012 .

[101]  H. F. Winters,et al.  Ion- and electron-assisted gas-surface chemistry—An important effect in plasma etching , 1979 .

[102]  Yong Wang,et al.  Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers. , 2013, ACS nano.

[103]  Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications , 2003, cond-mat/0305711.

[104]  Yong Wang,et al.  Highly ordered TiO2 nanostructures by sequential vapour infiltration of block copolymer micellar films in an atomic layer deposition reactor , 2013 .

[105]  Martin M. Frank,et al.  Enhanced initial growth of atomic-layer-deposited metal oxides on hydrogen-terminated silicon , 2003 .

[106]  Katsuhiko Ariga,et al.  Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications , 2013 .

[107]  M. Steinhart,et al.  Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomic‐Layer Deposition of Semiconductors , 2009 .

[108]  David S. Germack,et al.  Chemically enhancing block copolymers for block-selective synthesis of self-assembled metal oxide nanostructures. , 2013, ACS nano.

[109]  S. Bent,et al.  Highly stable monolayer resists for atomic layer deposition on germanium and silicon , 2006 .

[110]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[111]  Leonidas E. Ocola,et al.  Enhanced Block Copolymer Lithography Using Sequential Infiltration Synthesis , 2011 .

[112]  W. Jin,et al.  Highly porous metal oxide networks of interconnected nanotubes by atomic layer deposition. , 2012, Nano letters.

[113]  G. Parsons,et al.  Selective area atomic layer deposition of rhodium and effective work function characterization in capacitor structures , 2006 .

[115]  Wilfried Vandervorst,et al.  Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy , 2004 .

[116]  R. Weemaes,et al.  Purification of platinum and gold structures after electron-beam-induced deposition , 2006 .

[117]  Robert P. H. Chang,et al.  Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates , 2001 .

[118]  S. Cabrini,et al.  Single digit nanofabrication by step-and-repeat nanoimprint lithography , 2012, Nanotechnology.

[119]  F. Prinz,et al.  Area-Selective Atomic Layer Deposition Using Self-Assembled Monolayer and Scanning Probe Lithography , 2009 .

[120]  D. Hess,et al.  Transport behavior of atomic layer deposition precursors through polymer masking layers: Influence on area selective atomic layer deposition , 2007 .

[121]  A. Fernández-Pacheco,et al.  Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits , 2009 .

[122]  T. Gougousi,et al.  Microcontact patterning of ruthenium gate electrodes by selective area atomic layer deposition , 2005 .

[123]  S. Bent,et al.  Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification , 2005 .

[124]  H. Grampeix,et al.  CMOS compatible strategy based on selective atomic layer deposition of a hard mask for transferring block copolymer lithography patterns , 2010, Nanotechnology.

[125]  M. Sung,et al.  Atomic Layer Deposition of TiO2 Thin Films on Mixed Self‐Assembled Monolayers Studied as a Function of Surface Free Energy , 2003 .

[126]  M. Sung,et al.  Selective atomic layer deposition of titanium oxide on patterned self-assembled monolayers formed by microcontact printing. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[127]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .