Anaphora Resolution Involving Interactive Knowledge Acquisition

Anaphora resolution in current computer-processable controlled natural languages relies mainly on syntactic information, accessibility constraints and the distance of the anaphoric expression to its antecedent. This design decision has the advantage that a text can be processed automatically without any additional ontological knowledge, but it has the disadvantage that the author is severely restricted in using anaphoric expressions while writing a text. I will argue that we can allow for a wider range of anaphoric expressions whose resolution requires inference-supporting knowledge, if we consider the anaphora resolution process as an interactive knowledge acquisition process in those cases where no suitable noun phrase antecedent can be found. In particular, I will focus on definite descriptions that stand in a synonymy, subclass/ superclass or part-whole relation to their noun phrase antecedent, and show how the original anaphora resolution algorithm of PENG Light can be extended in a systematic way in order to take care of these bridging definite descriptions. The solution to this problem also sheds some light on the adequate treatment of part-whole relations in a controlled natural language context.

[1]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[2]  Tobias Kuhn,et al.  Writing Support for Controlled Natural Languages , 2008, ALTA.

[3]  P. Strawson III.—ON REFERRING , 1950 .

[4]  B. Russell II.—On Denoting , 1905 .

[5]  Renata Vieira,et al.  An Empirically-based System for Processing Definite Descriptions , 2000, CL.

[6]  Keith S. Donnellan Reference and Definite Descriptions , 1966 .

[7]  Douglas Herrmann,et al.  A Taxonomy of Part-Whole Relations , 1987, Cogn. Sci..

[9]  C. Fellbaum An Electronic Lexical Database , 1998 .

[10]  Frank Pfenning,et al.  Automated Deduction - CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings , 2007, CADE.

[11]  Peter Baumgartner,et al.  Hyper Tableaux with Equality , 2007, CADE.

[12]  J. Hintikka On denoting what? , 2005, Synthese.

[13]  Paul Buitelaar,et al.  Bridging as Coercive Accommodation , 1995, ArXiv.

[14]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[15]  Herbert H. Clark,et al.  Bridging , 1975, TINLAP.

[16]  Peter F. Patel-Schneider,et al.  DLP System Description , 1998, Description Logics.

[17]  Ronald C. Shank,et al.  Theoretical Issues in Natural Language Processing , 1975 .

[18]  Rolf Schwitter,et al.  Working for Two: A Bidirectional Grammar for a Controlled Natural Language , 2008, Australasian Conference on Artificial Intelligence.

[19]  Ralf Schwitter,et al.  ECOLE: a look-ahead editor of controlled language , 2003, EAMT.

[20]  Christoph Wernhard,et al.  System Description : KRHyper , 2003 .

[21]  Frank van Harmelen,et al.  Extensions to the Rippling-Out Tactic for Guiding Inductive Proofs , 1990, CADE.

[22]  R. Chaffin,et al.  An empirical taxonomy of part-whole relations: Effects of part-whole relation type on relation identification , 1988 .

[23]  Allan Ramsay,et al.  Models and Discourse Models , 2008 .

[24]  C. R.,et al.  On referring , 1950 .

[25]  Michael Kühn,et al.  Abducing Coreference by Model Construction , 2007 .

[26]  François Bry,et al.  SATCHMO: A Theorem Prover Implemented in Prolog , 1988, CADE.

[27]  Rolf Schwitter,et al.  Meaningful web annotations for humans and machines using controlled natural language , 2008, Expert Syst. J. Knowl. Eng..

[28]  Björn Pelzer,et al.  System Description: E-KRHyper , 2007, CADE.

[29]  Jerry R. Hobbs,et al.  Interpretation as Abduction , 1993, Artif. Intell..

[30]  Uwe Reyle,et al.  From discourse to logic , 1993 .

[31]  Johan Bos,et al.  Exploring Model Building for Natural Language Understanding , 2003 .

[32]  G. Frege Über Sinn und Bedeutung , 1892 .

[33]  Kaarel Kaljurand,et al.  Attempto Controlled English for Knowledge Representation , 2008, Reasoning Web.

[34]  Simone Teufel,et al.  Resolving bridging references in unrestricted text , 1997 .

[35]  Edith Bolling Anaphora Resolution , 2006 .

[36]  Massimo Poesio,et al.  Associative Descriptions and Salience: A Preliminary Investigation , 2003 .

[37]  Ruslan Mitkov,et al.  The Oxford handbook of computational linguistics , 2003 .

[38]  Ralf Möller,et al.  A Flexible DL-based Architecture for Deductive Information Systems , 2006 .

[39]  Rob A. van der Sandt,et al.  Presupposition Projection as Anaphora Resolution , 1992, J. Semant..

[40]  Geoff Sutcliffe,et al.  The TPTP Problem Library , 1994, Journal of Automated Reasoning.

[41]  Franz Baader,et al.  CEL - A Polynomial-Time Reasoner for Life Science Ontologies , 2006, IJCAR.

[42]  Massimo Poesio,et al.  Acquiring Lexical Knowledge for Anaphora Resolution , 2002, LREC.

[43]  Colin White,et al.  An Update on PENG Light , 2009, ALTA.

[44]  Yorick Wilks,et al.  Theoretical Issues in Natural Language Processing , 2018 .