CD101 genetic variants modify regulatory and conventional T cell phenotypes and functions

[1]  G. Freeman,et al.  Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1+ Stem-like CD8+ T Cells during Chronic Infection. , 2019, Immunity.

[2]  Greg Finak,et al.  New interpretable machine learning method for 1 single-cell data reveals correlates of clinical response to 2 cancer immunotherapy , 2019 .

[3]  L. Wedderburn,et al.  The transcription factor CREM drives an inflammatory phenotype of T cells in oligoarticular juvenile idiopathic arthritis , 2018, Pediatric Rheumatology.

[4]  J. Mullins,et al.  Whole genome sequencing of extreme phenotypes identifies variants in CD101 and UBE2V1 associated with increased risk of sexually acquired HIV-1 , 2017, PLoS pathogens.

[5]  Yufeng Shen,et al.  Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. , 2017, Cell reports.

[6]  K. Tenbrock,et al.  CREM Alpha Enhances IL-21 Production in T Cells In Vivo and In Vitro , 2016, Front. Immunol..

[7]  T. Ogata,et al.  Nucleotide substitutions in CD101, the human homolog of a diabetes susceptibility gene in non‐obese diabetic mouse, in patients with type 1 diabetes , 2016, Journal of diabetes investigation.

[8]  Robert Opoka,et al.  CD101 inhibits the expansion of colitogenic T cells , 2015, Mucosal Immunology.

[9]  T. Holderried,et al.  Stable inhibitory activity of regulatory T cells requires the transcription factor Helios , 2015, Science.

[10]  E. Knol,et al.  The cAMP response element modulator (CREM) regulates TH2 mediated inflammation , 2015, Oncotarget.

[11]  J. Baeten,et al.  Antiretroviral Pre-Exposure Prophylaxis Does Not Enhance Immune Responses to HIV in Exposed but Uninfected Persons. , 2015, The Journal of infectious diseases.

[12]  T. Rauen,et al.  CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. , 2014, The Journal of clinical investigation.

[13]  T. Ball,et al.  Immune Quiescence: a model of protection against HIV infection , 2013, Retrovirology.

[14]  J. Delrow,et al.  Differential regulatory T cell activity in HIV type 1-exposed seronegative individuals. , 2013, AIDS research and human retroviruses.

[15]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[16]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[17]  James D. Campbell,et al.  Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. , 2012, The New England journal of medicine.

[18]  K. Shianna,et al.  Genomewide Association Study for Determinants of HIV-1 Acquisition and Viral Set Point in HIV-1 Serodiscordant Couples with Quantified Virus Exposure , 2011, PloS one.

[19]  Mikkel B. Christensen,et al.  Evidence that Cd101 Is an Autoimmune Diabetes Gene in Nonobese Diabetic Mice , 2011, The Journal of Immunology.

[20]  A. Mancini,et al.  CD101 Expression and Function in Normal and Rheumatoid Arthritis-affected Human T Cells and Monocytes/Macrophages , 2011, The Journal of Rheumatology.

[21]  Thomas P. Hettmansperger,et al.  Robust Nonparametric Statistical Methods, Second Edition , 2010 .

[22]  J. Mullins,et al.  Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2. , 2010, The New England journal of medicine.

[23]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[24]  Matthew D. Young,et al.  Gene ontology analysis for RNA-seq: accounting for selection bias , 2010, Genome Biology.

[25]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[26]  E. Engleman,et al.  CD101 Surface Expression Discriminates Potency Among Murine FoxP3+ Regulatory T Cells1 , 2007, The Journal of Immunology.

[27]  E. Engleman,et al.  CD101 surface expression discriminates potency among murine FoxP3+ regulatory T cells. , 2007, The Journal of Immunology.

[28]  M. Bagot,et al.  Triggering CD101 molecule on human cutaneous dendritic cells inhibits T cell proliferation via IL‐10 production , 2000, European journal of immunology.

[29]  E. Engleman,et al.  V7 (CD101) ligation inhibits TCR/CD3-induced IL-2 production by blocking Ca2+ flux and nuclear factor of activated T cell nuclear translocation. , 1998, Journal of immunology.

[30]  E. Engleman,et al.  Differential response of CD4+ V7+ and CD4+ V7− T cells to T cell receptor‐dependent signals: CD4+ V7+ T cells are co‐stimulation independent and anti‐V7 antibody blocks the induction of anergy by bacterial superantigen , 1997, European journal of immunology.

[31]  R. Warnke,et al.  V7, a novel leukocyte surface protein that participates in T cell activation. I. Tissue distribution and functional studies. , 1995, Journal of immunology.

[32]  E. Engleman,et al.  V7, a novel leukocyte surface protein that participates in T cell activation. II. Molecular cloning and characterization of the V7 gene. , 1995, Journal of immunology.

[33]  E. Meffre,et al.  Differential proliferative responses in subsets of human CD28+ cells delineated by BB27 mAb. , 1994, International Immunology.

[34]  Louis A. Jaeckel Estimating Regression Coefficients by Minimizing the Dispersion of the Residuals , 1972 .

[35]  J. Jurecková,et al.  Nonparametric Estimate of Regression Coefficients , 1971 .

[36]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[37]  Joseph W. McKean,et al.  Rfit: Rank-based Estimation for Linear Models , 2012, R J..

[38]  S. Gichuhi Partners In Prevention Hsv/hiv Transmission Study Team , 2010 .