Adaptive Discriminant Wavelet Packet Transform and Local Binary Patterns for Meningioma Subtype Classification

The inherent complexity and non-homogeneity of texture makes classification in medical image analysis a challenging task. In this paper, we propose a combined approach for meningioma subtype classification using subband texture (macro) features and micro-texture features. These are captured using the Adaptive Wavelet Packet Transform (ADWPT) and Local Binary Patterns (LBPs), respectively. These two different textural features are combined together and used for classification. The effect of various dimensionality reduction techniques on classification performance is also investigated. We show that high classification accuracies can be achieved using ADWPT. Although LBP features do not provide higher overall classification accuracies than ADWPT, it manages to provide higher accuracy for a meningioma subtype that is difficult to classify otherwise.

[1]  R Fankhauser,et al.  Tumours of the nervous system. , 1974, Bulletin of the World Health Organization.

[2]  David G. Stork,et al.  Pattern Classification , 1973 .

[3]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[4]  R. Porter,et al.  Gabor filters for rotation invariant texture classification , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[5]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[6]  Thomas M. Breuel,et al.  Automated Feature Selection for the Classification of Meningioma Cell Nuclei , 2006, Bildverarbeitung für die Medizin.

[7]  P. Burger,et al.  What is an Oligodendroglioma? , 2002, Brain pathology.

[8]  Hans-Peter Meinzer,et al.  Bildverarbeitung für die Medizin 2006, Algorithmen, Systeme, Anwendungen, Proceedings des Workshops vom 19. - 21. März 2006 in Hamburg , 2006, Bildverarbeitung für die Medizin.

[9]  Tim W. Nattkemper,et al.  Feature-space exploration of pathology images using content-based database visualization , 2006, SPIE Medical Imaging.

[10]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Deendayal Dinakarpandian,et al.  A New Metric to Measure Gene Product Similarity , 2007, BIBM.

[12]  Joel H. Saltz,et al.  Pathological Image Analysis Using the GPU: Stroma Classification for Neuroblastoma , 2007, 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007).

[13]  Erkki Oja,et al.  Reduced Multidimensional Co-Occurrence Histograms in Texture Classification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Harald Haas,et al.  Asilomar Conference on Signals, Systems, and Computers , 2006 .

[15]  L. Sobin,et al.  World Health Organization classification of tumors , 2000, Cancer.

[16]  Michael Unser,et al.  Multiresolution Feature Extraction and Selection for Texture Segmentation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Charles K. Chui,et al.  Special issue on diffusion maps and wavelets , 2006 .

[18]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Jun Kong,et al.  Computer-aided prognosis of neuroblastoma: classification of stromal development on whole-slide images , 2008, SPIE Medical Imaging.

[20]  M. M. Leung,et al.  Scale and rotation invariant texture classification , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.

[21]  E. Berg,et al.  World Health Organization Classification of Tumours , 2002 .

[22]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[23]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[24]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[25]  Nasir M. Rajpoot,et al.  Local discriminant wavelet packet basis for texture classification , 2003, SPIE Optics + Photonics.