Demands in the area of electrical energy generation and distribution, as a result of energy policies, are leading to far reaching changes in the structure of the energy supply, which is characterised, on the one hand, by the substitution of conventional power stations by renewable energy generation, a decision which has already been made, and, on the other hand, by the changeover from centralised to decentralised energy generation. From an electrical engineering point of view, a new situation will arise for consumers concerning security of supply and power quality, which calls for further technical measures by the grid operators to ensure that the increasingly stringent supply criteria can be met. This article describes a new power electronics based approach which allows a grid compatible integration of predominantly renewable electricity generators even in weak grids making them appear to be electromechanical synchronous machines. As a consequence, all the proven properties of this type of machine which have so far defined the grid continue to do so, even when integrating photovoltaic or wind energy. These properties include, for instance, interaction between grid and generator as in a remote power dispatch, reaction to transients as well as the full electrical effects of a rotating mass. In addition, this new development can be operated in such a way that it provides primary reserve allowing, from a grid point of view, electricity generators such as wind and PV to be regarded as conventional power stations.