Emergent Lévy behavior in single-cell stochastic gene expression.
暂无分享,去创建一个
[1] Chen Jia. Simplification of irreversible Markov chains by removal of states with fast leaving rates. , 2016, Journal of theoretical biology.
[2] Hannah H. Chang,et al. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours , 2009, Nature Reviews Genetics.
[3] John Wakeley,et al. The limits of theoretical population genetics. , 2005, Genetics.
[4] P. Anderson. More is different. , 1972, Science.
[5] M. Delbrück. Statistical Fluctuations in Autocatalytic Reactions , 1940 .
[6] Niraj Kumar,et al. Exact distributions for stochastic gene expression models with bursting and feedback. , 2014, Physical review letters.
[7] T. Kepler,et al. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.
[8] Shasha Chong,et al. Mechanism of Transcriptional Bursting in Bacteria , 2014, Cell.
[9] W. Ewens. Mathematical Population Genetics : I. Theoretical Introduction , 2004 .
[10] J. Newby. Bistable switching asymptotics for the self regulating gene , 2014, 1407.4344.
[11] Chen Jia,et al. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts. , 2017, Physical review. E.
[12] Jürg Bähler,et al. Coordinating genome expression with cell size. , 2012, Trends in genetics : TIG.
[13] N. Friedman,et al. Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.
[14] Paul C. Bressloff,et al. Stochastic switching in biology: from genotype to phenotype , 2017 .
[15] D. Applebaum. Lévy Processes and Stochastic Calculus: Preface , 2009 .
[16] A. Raj,et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. , 2015, Molecular cell.
[17] Hong Qian,et al. Stochastic phenotype transition of a single cell in an intermediate region of gene state switching. , 2013, Physical review letters.
[18] T. Kurtz. The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .
[19] Johan Paulsson,et al. Models of stochastic gene expression , 2005 .
[20] Nir Friedman,et al. Linking stochastic dynamics to population distribution: an analytical framework of gene expression. , 2006, Physical review letters.
[21] Chen Jia. Reduction of Markov chains with two-time-scale state transitions , 2013, 1311.2196.
[22] M. Ehrenberg,et al. Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. , 2000, Physical review letters.
[23] Charles R Doering,et al. Gene expression dynamics with stochastic bursts: Construction and exact results for a coarse-grained model. , 2015, Physical review. E.
[24] Vahid Shahrezaei,et al. Analytical distributions for stochastic gene expression , 2008, Proceedings of the National Academy of Sciences.
[25] X. Xie,et al. Probing Gene Expression in Live Cells, One Protein Molecule at a Time , 2006, Science.
[26] Michael Q. Zhang,et al. Stochastic fluctuations can reveal the auto-regulatory characteristics of gene networks at the single-molecule level , 2017 .
[27] H. Qian. Cooperativity in cellular biochemical processes: noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. , 2012, Annual review of biophysics.
[28] O. Berg. A model for the statistical fluctuations of protein numbers in a microbial population. , 1978, Journal of theoretical biology.
[29] H. Qian. Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems—an analytical theory , 2011 .
[30] J. Peccoud,et al. Markovian Modeling of Gene-Product Synthesis , 1995 .