Conformational changes and disease--serpins, prions and Alzheimer's.

Some of the most perplexing disorders in medicine are each now known to arise from the conformational instability of an underlying protein. The consequence is a continuum of pathologies with typically a change in fold leading to ordered aggregation and tissue deposition. The serpins provide a structural prototype for these pathologies and give a perspective on the assessment of current proposals as to the conformational basis of both Alzheimer's disease and the transmissible prion encephalopathies.

[1]  K. Waltersson,et al.  The crystal structure of Cs[VOF3] · 12H2O , 1979 .

[2]  P. Stein,et al.  What do dysfunctional serpins tell us about molecular mobility and disease? , 1995, Nature Structural Biology.

[3]  J. Griffith,et al.  Nature of the Scrapie Agent: Self-replication and Scrapie , 1967, Nature.

[4]  Claudio Soto,et al.  β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer's therapy , 1998, Nature Medicine.

[5]  S. Aota,et al.  Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. , 1998, Journal of molecular biology.

[6]  S. Kang,et al.  Characterization of a Human α1-Antitrypsin Variant That Is as Stable as Ovalbumin* , 1998, The Journal of Biological Chemistry.

[7]  M. Abrahamson,et al.  Increased body temperature accelerates aggregation of the Leu-68-->Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Abrahams,et al.  Implications for function and therapy of a 2.9 A structure of binary-complexed antithrombin. , 1998, Journal of molecular biology.

[9]  Amyloid β threads in the fabric of Alzheimer's disease , 1998, Nature Medicine.

[10]  D Eisenberg,et al.  The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Prusiner,et al.  Prion diseases and the BSE crisis. , 1997, Science.

[12]  P. Stein,et al.  Biological implications of a 3 A structure of dimeric antithrombin. , 1994, Structure.

[13]  S. Eriksson,et al.  In vitro amyloid fibril formation from alpha 1-antitrypsin. , 1995, Biological chemistry Hoppe-Seyler.

[14]  D. Selkoe,et al.  Amyloid β-Protein and the Genetics of Alzheimer's Disease* , 1996, The Journal of Biological Chemistry.

[15]  H. Lehmann,et al.  Haemoglobin Köln (β–98 Valine → Methionine): An Unstable Protein Causing Inclusion-Body Anaemia , 1966, Nature.

[16]  F. Cohen,et al.  Prion diseases of humans and animals , 1996 .

[17]  R. Carrell,et al.  Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn-->Asp) , 1994, The Journal of clinical investigation.

[18]  B. Chesebro BSE and Prions: Uncertainties About the Agent , 1998, Science.

[19]  T. Wight,et al.  Perlecan Binds to the β‐Amyloid Proteins (Aβ) of Alzheimer's Disease, Accelerates Aβ Fibril Formation, and Maintains Aβ Fibril Stability , 1997 .

[20]  F. Cohen,et al.  Prion Protein Biology , 1998, Cell.

[21]  W. Hol,et al.  The intact and cleaved human antithrombin III complex as a model for serpin–proteinase interactions , 1994, Nature Structural Biology.

[22]  J. Whisstock,et al.  An atlas of serpin conformations. , 1998, Trends in biochemical sciences.

[23]  D. Lomas,et al.  The mechanism of Z α1-antitrypsin accumulation in the liver , 1993, Nature.

[24]  P. Stein,et al.  The biostructural pathology of the serpins: critical function of sheet opening mechanism. , 1996, Biological chemistry Hoppe-Seyler.

[25]  F. Cohen,et al.  Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Kisilevsky,et al.  Temporal relationship between glycosaminoglycan accumulation and amyloid deposition during experimental amyloidosis. A histochemical study. , 1985, Laboratory investigation; a journal of technical methods and pathology.

[27]  J. Hofrichter,et al.  Sickle cell hemoglobin polymerization. , 1990, Advances in protein chemistry.

[28]  C. Masters,et al.  Tangle disentanglement , 1996, Nature.

[29]  Christopher M. Dobson,et al.  Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis , 1997, Nature.

[30]  R. Crowther,et al.  Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans , 1996, Nature.

[31]  A. Aguzzi,et al.  Prion research: the next frontiers , 1997, Nature.

[32]  F E Cohen,et al.  The prion folding problem. , 1997, Current opinion in structural biology.

[33]  P. Gettins,et al.  Mapping the Serpin-Proteinase Complex Using Single Cysteine Variants of α1-Proteinase Inhibitor Pittsburgh* , 1998, The Journal of Biological Chemistry.

[34]  M. Laurent Autocatalytic processes in cooperative mechanisms of prion diseases , 1997, FEBS letters.

[35]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[36]  L. Serpell,et al.  Common core structure of amyloid fibrils by synchrotron X-ray diffraction. , 1997, Journal of molecular biology.

[37]  P. Björquist,et al.  Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by site-directed mutagenesis. , 1998, Biochemistry.

[38]  D. Musil,et al.  Interfering with the inhibitory mechanism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. , 1998, Structure.

[39]  Martin Rossor,et al.  A new variant of prion disease , 1996, The Lancet.

[40]  D. Lomas,et al.  Latent α1-Antichymotrypsin , 1998, The Journal of Biological Chemistry.

[41]  J. Kelly,et al.  Alternative conformations of amyloidogenic proteins govern their behavior. , 1996, Current opinion in structural biology.

[42]  D. Lomas,et al.  Alpha1-antitrypsin deficiency, cirrhosis and emphysema , 1998 .

[43]  J. Kelly,et al.  The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. , 1998, Current opinion in structural biology.

[44]  Bruce A. Yanker New clues to Alzheimer's disease: Unraveling the roles of amyloid and tau , 1996, Nature Medicine.

[45]  E. Goldsmith,et al.  Structural basis of latency in plasminogen activator inhibitor-1 , 1992, Nature.

[46]  P. Fraser,et al.  Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease , 1995, Nature Medicine.

[47]  Bruce A. Yankner,et al.  Aging renders the brain vulnerable to amyloid β-protein neurotoxicity , 1998, Nature Medicine.

[48]  C. Laurell,et al.  The Electrophoretic α;1-Globulin Pattern of Serum in α;1-Antitrypsin Deficiency , 1963 .

[49]  J. Abrahams,et al.  Inhibitory conformation of the reactive loop of α1-antitrypsin , 1996, Nature Structural Biology.

[50]  G. Glenner Amyloid deposits and amyloidosis. The beta-fibrilloses (first of two parts). , 1980, The New England journal of medicine.

[51]  J. Abrahams,et al.  The anticoagulant activation of antithrombin by heparin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Aiwu Zhou,et al.  Antithrombins Wibble and Wobble (T85M/K): archetypal conformational diseases with in vivo latent-transition, thrombosis, and heparin activation. , 1998, Blood.

[53]  D. Lawrence,et al.  Molecular evolution of plasminogen activator inhibitor‐1 functional stability. , 1995, The EMBO journal.

[54]  J. Abrahams,et al.  Wild-type alpha 1-antitrypsin is in the canonical inhibitory conformation. , 1998, Journal of molecular biology.

[55]  M. Skinner,et al.  Characterization of the Amyloid Fibril as a Cross-β Protein∗ , 1969, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.