Infrared spectroscopic studies on unoriented single-walled carbon nanotube films under hydrostatic pressure

The electronic properties of as-prepared and purified unoriented single-walled carbon nanotube films were studied by transmission measurements over a broad frequency range (far-infrared up to visible) as a function of temperature (15 K - 295 K) and external pressure (up to 8 GPa). Both the as-prepared and the purified SWCNT films exhibit nearly temperature-independent properties. With increasing pressure the low-energy absorbance decreases suggesting an increasing carrier localization due to pressure-induced deformations. The energy of the optical transitions in the SWCNTs decreases with increasing pressure, which can be attributed to pressure-induced hybridization and symmetry-breaking effects. We find an anomaly in the pressure-induced shift of the optical transitions at �2 GPa due to a structural phase transition.

[1]  R. Martel,et al.  Mechanism of the far-infrared absorption of carbon-nanotube films. , 2008, Physical review letters.

[2]  D. Walters,et al.  Infrared microreflectance study of the pressure effect on the structural properties of magnetically aligned single‐wall carbon nanotubes , 2008 .

[3]  J. Chen,et al.  Pressure‐ and orientation‐dependent linear optical absorption spectra of radially deformed single‐walled carbon nanotubes , 2008 .

[4]  A. Mascarenhas,et al.  Role of electron-phonon interactions and external strain on the electronic properties of semiconducting carbon nanotubes , 2007 .

[5]  D. Dunstan,et al.  High pressure Raman spectroscopy of single-walled carbon nanotubes: Effect of chemical environment on individual nanotubes and the nanotube bundle , 2006 .

[6]  R. Nicholas,et al.  Photoluminescence study of aqueous-surfactant-wrapped single-walled carbon nanotubes under hydrostatic pressure , 2006 .

[7]  M. Hasegawa,et al.  Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure , 2006 .

[8]  A. Rinzler,et al.  Charge dynamics in transparent single-walled carbon nanotube films from optical transmission measurements , 2006 .

[9]  P. Puech,et al.  Nanoscale pressure effects in individual double-wall carbon nanotubes , 2006 .

[10]  O. Zhou,et al.  Strong Anisotropy in the Far‐Infrared Absorption Spectra of Stretch‐Aligned Single‐Walled Carbon Nanotubes , 2006 .

[11]  S. Louie,et al.  Temperature dependence of the optical transition energies of carbon nanotubes: the role of electron-phonon coupling and thermal expansion. , 2006, Physical review letters.

[12]  F. Hennrich,et al.  Raman study of individually dispersed single-walled carbon nanotubes under pressure , 2006 .

[13]  P. Toulemonde,et al.  Raman spectroscopy of open‐ended Single Wall Carbon Nanotubes under pressure: effect of the pressure transmitting medium , 2006 .

[14]  P. Toulemonde,et al.  Resonant Raman spectroscopy of single-wall carbon nanotubes under pressure , 2005 .

[15]  Mark R. Johnson,et al.  Argon adsorption in open-ended single-wall carbon nanotubes , 2005 .

[16]  S. Louie,et al.  Temperature dependence of the band gap of semiconducting carbon nanotubes. , 2004, Physical review letters.

[17]  M. Monteverde,et al.  Pressure control of conducting channels in single-wall carbon nanotube networks. , 2004, Physical review letters.

[18]  Lain‐Jong Li,et al.  Chirality assignment of single-walled carbon nanotubes with strain. , 2004, Physical review letters.

[19]  X. Gong,et al.  Structure and phase transitions of single-wall carbon nanotube bundles under hydrostatic pressure , 2004 .

[20]  J. Lefebvre,et al.  Temperature-dependent photoluminescence from single-walled carbon nanotubes , 2004 .

[21]  J. Maguire,et al.  Study of the hydrostatic pressure dependence of the Raman spectrum of single-walled carbon nanotubes and nanospheres. , 2004, The Journal of chemical physics.

[22]  Wladek Walukiewicz,et al.  Structure-dependent hydrostatic deformation potentials of individual single-walled carbon nanotubes , 2004 .

[23]  Y. Kawazoe,et al.  Phase diagram of single-wall carbon nanotube crystals under hydrostatic pressure , 2004 .

[24]  Joo-Hiuk Son,et al.  Optical and electrical properties of preferentially anisotropic single-walled carbon-nanotube films in terahertz region , 2004 .

[25]  Christian Thomsen,et al.  Carbon Nanotubes: Basic Concepts and Physical Properties , 2004 .

[26]  R. Young,et al.  Collapse of single-wall carbon nanotubes is diameter dependent. , 2004, Physical review letters.

[27]  Tsu-Wei Chou,et al.  Elastic properties of single-walled carbon nanotubes in transverse directions , 2004 .

[28]  Sharali Malik,et al.  Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure , 2003 .

[29]  R. Haddon,et al.  Nitric Acid Purification of Single-Walled Carbon Nanotubes , 2003 .

[30]  Ray H. Baughman,et al.  Mechanical and electromechanical coupling in carbon nanotube distortions , 2003 .

[31]  X. Gong,et al.  Carbon nanotube bundles under high pressure: Transformation to low-symmetry structures , 2003 .

[32]  J. Schreiber,et al.  Modifications of single-wall carbon nanotubes upon oxidative purification treatments , 2003 .

[33]  I. Loa Raman spectroscopy on carbon nanotubes at high pressure , 2003, cond-mat/0307356.

[34]  Quan Qing,et al.  Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes , 2003 .

[35]  Hui Hu,et al.  Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy , 2003 .

[36]  B. Gu,et al.  Metal-to-semiconductor transition in squashed armchair carbon nanotubes. , 2003, Physical review letters.

[37]  Jin-ming Dong,et al.  Localization length in deformed metallic carbon nanotubes , 2002 .

[38]  Sharali Malik,et al.  Preparation, characterization and applications of free-standing single walled carbon nanotube thin films , 2002 .

[39]  O. Chauvet,et al.  Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites , 2002, cond-mat/0204520.

[40]  S. Reich,et al.  Elastic properties of carbon nanotubes under hydrostatic pressure , 2002 .

[41]  S. Ciraci,et al.  Reversible band-gap engineering in carbon nanotubes by radial deformation , 2002, cond-mat/0203226.

[42]  M. Itkis,et al.  Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes , 2002 .

[43]  J. Sauvajol,et al.  Polygonization of single-wall carbon nanotube bundles under high pressure , 2001 .

[44]  Susumu Saito,et al.  Pressure and Orientation Effects on the Electronic Structure of Carbon Nanotube Bundles , 2001 .

[45]  Jie Jiang,et al.  Universal expression for localization length in metallic carbon nanotubes , 2001 .

[46]  M. Monthioux,et al.  Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation , 2001 .

[47]  A. Govindaraj,et al.  Pressure-induced phase transformation and structural resilience of single-wall carbon nanotube bundles , 2001 .

[48]  S. Stafström,et al.  Disorder-induced electron localization in metallic carbon nanotubes , 2001 .

[49]  Sasaki,et al.  Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure , 2000, Physical review letters.

[50]  Nobutsugu Minami,et al.  Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films , 2000 .

[51]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[52]  M. Mazzoni,et al.  Bandgap closure of a flattened semiconductor carbon nanotube: A first-principles study , 2000 .

[53]  Zhang,et al.  Gapping by squashing: metal-insulator and insulator-metal transitions in collapsed carbon nanotubes , 2000, Physical review letters.

[54]  O. Hilt,et al.  Localized and Delocalized Charge Transport in Single-Wall Carbon-Nanotube Mats , 2000, cond-mat/0001222.

[55]  P. Parilla,et al.  A Simple and Complete Purification of Single‐Walled Carbon Nanotube Materials , 1999 .

[56]  Yong‐Hyun Kim,et al.  Band-gap modification by radial deformation in carbon nanotubes , 1999 .

[57]  Andrew G. Rinzler,et al.  Far-Infrared gaps in single-wall carbon nanotubes , 1999 .

[58]  W. Pompe,et al.  Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy , 1999 .

[59]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[60]  Patrick Bernier,et al.  Tuning and monitoring the electronic structure of carbon nanotubes , 1999 .

[61]  M. Fuhrer,et al.  Localization in single-walled carbon nanotubes , 1998 .

[62]  M. Anantram,et al.  Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain , 1998, cond-mat/9811263.

[63]  A. Rinzler,et al.  Thermoelectric Power of Single-Walled Carbon Nanotubes , 1998 .

[64]  P. Wachter,et al.  The optical response of carbon nanotubes , 1997 .

[65]  Charlier,et al.  Electronic properties of carbon nanotubes with polygonized cross sections. , 1996, Physical review. B, Condensed matter.

[66]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[67]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[68]  G. Huber,et al.  Pressure dependence of4flevels in europium pentaphosphate up to 400 kbar , 1977 .

[69]  D. Tanner,et al.  Far-infrared absorption in small metallic particles , 1975 .

[70]  M. D. Coutts,et al.  Optical Properties of Granular Silver and Gold Films , 1973 .

[71]  Martin Dressel,et al.  Electrodynamics of solids , 2002 .

[72]  A. Rinzler,et al.  Far-infrared to visible optical conductivity of single-wall carbon nanotubes , 2001 .