Optimal control of vibrations of an elastic beam

This paper is concerned with the optimal control problem of the vibrations of an elastic beam, which is governed by a non-linear partial differential equation. The functional analytical approach of Dubovitskii and Milyutin is adopted in investigation of the Pontryagin’s maximum principle of the system. The necessary condition is presented for the optimal control problem in fixed final horizon case.

[1]  SUNBing,et al.  MAXIMUM PRINCIPLE FOR THE OPTIMAL CONTROL OF AN ABLATION-TRANSPIRATION COOLING SYSTEM , 2005 .

[2]  Tsu-Wei Chou,et al.  Finite Deformation and Nonlinear Elastic Behavior of Flexible Composites , 1988 .

[3]  J. C. Bruch,et al.  Optimal Control of Structural Dynamic Systems in One Space Dimension Using a Maximum Principle , 2005 .

[4]  H. T. Banks,et al.  A nonlinear beam equation , 2002, Appl. Math. Lett..

[5]  Bao-Zhu Guo,et al.  Riesz Basis Approach to the Tracking Control of a Flexible Beam with a Tip Rigid Body without Dissipativity , 2002, Optim. Methods Softw..

[6]  W. L. CHAK,et al.  Optimal Birth Control of Population Dynamics * , 2003 .

[7]  Günter Leugering,et al.  Dynamic domain decomposition of optimal control problems for networks of Euler-Bernoulli beams , 1998 .

[8]  K. Gu Stability and Stabilization of Infinite Dimensional Systems with Applications , 1999 .

[9]  J. C. Bruch,et al.  Maximum principle for the optimal control of a hyperbolic equation in one space dimension, part 2: Application , 1995 .

[10]  G. Leugering Dynamic Domain Decomposition of Optimal Control Problems for Networks of Strings and Timoshenko Beams , 1999 .

[11]  J. C. Bruch,et al.  Optimal control of a Timoshenko beam by distributed forces , 1986 .

[12]  S. Adali,et al.  Maximum Principle for Optimal Boundary Control of Vibrating Structures with Applications to Beams , 1998 .

[13]  Y. Ho,et al.  Simple Explanation of the No-Free-Lunch Theorem and Its Implications , 2002 .

[14]  Guo Bao-zhu Pointwise measure, control and stabilization of elastic beams , 2003 .

[15]  David S. Gilliam,et al.  Well-posedness for a One Dimensional Nonlinear Beam , 1995 .

[16]  Ibrahim Sadek,et al.  Optimal Active Control of Distributed-Parameter Systems with Applications to a Rayleigh Beam , 1990 .

[17]  H. Mittelmann,et al.  The non-linear beam via optimal control with bounded state variables , 1991 .

[18]  J. C. Bruch,et al.  Maximum principle for the optimal control of a hyperbolic equation in one space dimension, part 1: Theory , 1995 .

[19]  J. C. Bruch,et al.  Numerical solution of the optimal boundary control of transverse vibrations of a beam , 1999 .

[20]  J. C. Bruch,et al.  A Maximum Principle for Optimal Control Using Spatially Distributed Pointwise Controllers , 1998 .

[21]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[22]  Taher Abualrub,et al.  Optimal pointwise control for a parallel system of Euler-Bernoulli beams , 2001 .

[23]  J. C. Bruch,et al.  Maximum Principle for the Optimal Control of a Hyperbolic Equation in Two Space Dimensions , 1996 .

[24]  Simon X. Yang,et al.  A Discrete Optimal Control Method for a Flexible Cantilever Beam with Time Delay , 2006 .

[25]  Sarp Adali,et al.  A maximum principle approach to optimal control for one-dimensional hyperbolic systems with several state variables , 2006, J. Frankl. Inst..

[26]  Ibrahim Sadek,et al.  Optimal control of serially connected structures using spatially distributed pointwise controllers , 1996 .

[27]  Weijiu Liu Optimal control of a rotating body beam , 2002 .

[28]  Ibrahim Sadek,et al.  Optimal open/closed-loop control of a Rayleigh beam , 1992 .

[29]  J. C. Bruch,et al.  Optimal (distributed or boundary) control of the vibrations of continuous systems solved numerically in a space‐time domain , 1997 .