Lipase-catalyzed synthesis of fatty acid diethanolamides.

Diethanolamides are nonionic emulsifiers widely used in industries such as cosmetics and as corrosion inhibitors. Candida antarctica lipase (Novozym 435) was used to catalyze the amidation of various fatty acids with diethanolamine. Contents of fatty acids, metal ions, and water affected the yields of diethanolamides. Hexanoic acid was the best substrate among all acyl donors. Yields of hexanoyl diethanolamide (HADEA), lauroyl diethanolamide (LADEA), and oleoyl diethanolamide (OADEA), obtained after 24 h of lipase-catalyzed reaction at 50 degrees C and 250 rpm with 90 mM fatty acid and 360 mM diethanolamine in acetonitrile, were 76.5, 49.5, and 12.1%, respectively. Addition of 1 mM metal salts increased the yields of HADEA and LADEA. Kinetic analysis showed that the yields of HADEA and LADEA in lipase-catalyzed reactions were largely associated with the rate of the forward reaction constant k(1). Anhydrous enzyme was found to be the best for the amidation reaction. Study on the enzyme operational stability showed that C. antarctica lipase retained 95 and 85% of the initial activity for the syntheses of HADEA and LADEA, respectively (even after repeated use for 10 days). The reaction runs smoothly without the use of hazardous reactants, and the developed method is useful for the industrial application.