tDNA insulators and the emerging role of TFIIIC in genome organization

Recent findings provide evidence that tDNAs function as chromatin insulators from yeast to humans. TFIIIC, a transcription factor that interacts with the B-box in tDNAs as well as thousands of ETC sites in the genome, is responsible for insulator function. Though tDNAs are capable of enhancer-blocking and barrier activities for which insulators are defined, new insights into the relationship between insulators and chromatin structure suggest that TFIIIC serves a complex role in genome organization. We review the role of tRNA genes and TFIIIC as chromatin insulators, and highlight recent findings that have broadened our understanding of insulators in genome biology.

[1]  V. Corces,et al.  Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains , 2012, Genome research.

[2]  Michael Y Tolstorukov,et al.  Nature and function of insulator protein binding sites in the Drosophila genome , 2012, Genome research.

[3]  A. Donaldson,et al.  TFIIIC localizes budding yeast ETC sites to the nuclear periphery , 2012, Molecular biology of the cell.

[4]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[5]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[6]  A. West,et al.  Chromatin insulator elements: establishing barriers to set heterochromatin boundaries. , 2012, Epigenomics.

[7]  M. Teichmann,et al.  RNA polymerase III transcription control elements: themes and variations. , 2012, Gene.

[8]  C. M. Hart,et al.  Genome-wide studies of the multi-zinc finger Drosophila Suppressor of Hairy-wing protein in the ovary , 2012, Nucleic acids research.

[9]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[10]  D. Haussler,et al.  Human tRNA genes function as chromatin insulators , 2012, EMBO Journal.

[11]  Jianrong Wang,et al.  Genome-wide prediction and analysis of human chromatin boundary elements , 2011, Nucleic acids research.

[12]  Jean-Christophe Aude,et al.  Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells , 2011, Nucleic acids research.

[13]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[14]  Y. Kim,et al.  Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus (Proceedings of the National Academy of Sciences of the United States of America (2011) 108, (7391-7396) DOI: 10.1073/pnas.1018279108)) , 2011 .

[15]  K. Jones,et al.  Regulation of chromatin organization and inducible gene expression by a Drosophila insulator. , 2011, Molecular cell.

[16]  Ian M. Carr,et al.  The proteomes of transcription factories containing RNA polymerases I, II or III , 2011, Nature Methods.

[17]  A. Pavlícek,et al.  tRNA genes protect a reporter gene from epigenetic silencing in mouse cells , 2011, Cell cycle.

[18]  R. Kamakaka,et al.  Nucleoporin Mediated Nuclear Positioning and Silencing of HMR , 2011, PloS one.

[19]  Chee Seng Chan,et al.  CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells , 2011, Nature Genetics.

[20]  Y. Kim,et al.  Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus , 2011, Proceedings of the National Academy of Sciences.

[21]  Mark Groudine,et al.  On emerging nuclear order , 2011, The Journal of cell biology.

[22]  Giacomo Cavalli,et al.  A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber , 2011, Proceedings of the National Academy of Sciences.

[23]  V. Pirrotta,et al.  Insulators, Not Polycomb Response Elements, Are Required for Long-Range Interactions between Polycomb Targets in Drosophila melanogaster , 2010, Molecular and Cellular Biology.

[24]  B. van Steensel,et al.  The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome , 2010, PloS one.

[25]  Jesse R. Raab,et al.  Insulators and promoters: closer than we think , 2010, Nature Reviews Genetics.

[26]  Z. Weng,et al.  Genomic Binding Profiles of Functionally Distinct RNA Polymerase III Transcription Complexes in Human Cells , 2010, Nature Structural &Molecular Biology.

[27]  William Stafford Noble,et al.  A Three-Dimensional Model of the Yeast Genome , 2010, Nature.

[28]  M. Karakozova,et al.  Interaction between a pair of gypsy insulators or between heterologous gypsy and Wari insulators modulates Flp site-specific recombination in Drosophila melanogaster , 2010, Chromosoma.

[29]  R. Ohlsson,et al.  CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin , 2010, Chromosoma.

[30]  S. Grewal,et al.  Centromeric Localization of Dispersed Pol III Genes in Fission Yeast , 2010, Molecular biology of the cell.

[31]  Christopher D. Brown,et al.  A Comprehensive Map of Insulator Elements for the Drosophila Genome , 2010, PLoS genetics.

[32]  Christel Krueger,et al.  Cohesin Is Required for Higher-Order Chromatin Conformation at the Imprinted IGF2-H19 Locus , 2009, PLoS genetics.

[33]  N. Dhillon,et al.  Transcription Independent Insulation at TFIIIC-Dependent Insulators , 2009, Genetics.

[34]  Jessica Cande,et al.  Stalled Hox promoters as chromosomal boundaries. , 2009, Genes & development.

[35]  V. Corces,et al.  CTCF: Master Weaver of the Genome , 2009, Cell.

[36]  Victor G Corces,et al.  Three subclasses of a Drosophila insulator show distinct and cell type-specific genomic distributions. , 2009, Genes & development.

[37]  Tobias Straub,et al.  Active promoters and insulators are marked by the centrosomal protein 190 , 2009, The EMBO journal.

[38]  Dustin E. Schones,et al.  Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. , 2008, Genome research.

[39]  L. Beatty,et al.  The CTCF Insulator Protein Is Posttranslationally Modified by SUMO , 2008, Molecular and Cellular Biology.

[40]  D. J. Edwards,et al.  TFIIIC Binding Sites Function as both Heterochromatin Barriers and Chromatin Insulators in Saccharomyces cerevisiae , 2008, Eukaryotic Cell.

[41]  T. Itoh,et al.  Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. , 2008, Genes & development.

[42]  D. Engelke,et al.  Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. , 2008, Genes & development.

[43]  L. Wessels,et al.  Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions , 2008, Nature.

[44]  H. Aburatani,et al.  Cohesin mediates transcriptional insulation by CCCTC-binding factor , 2008, Nature.

[45]  Elissa P. Lei,et al.  Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila. , 2007, Molecular cell.

[46]  H. Willard,et al.  An RNA Polymerase III-Dependent Heterochromatin Barrier at Fission Yeast Centromere 1 , 2007, PloS one.

[47]  Gratien G. Prefontaine,et al.  Developmentally Regulated Activation of a SINE B2 Repeat as a Domain Boundary in Organogenesis , 2007, Science.

[48]  S. Gasser,et al.  The nuclear envelope and transcriptional control , 2007, Nature Reviews Genetics.

[49]  Boris Adryan,et al.  CTCF Genomic Binding Sites in Drosophila and the Organisation of the Bithorax Complex , 2007, PLoS genetics.

[50]  Olivier Lefebvre,et al.  Identification, Molecular Cloning, and Characterization of the Sixth Subunit of Human Transcription Factor TFIIIC* , 2007, Journal of Biological Chemistry.

[51]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[52]  Michael Q. Zhang,et al.  Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome , 2007, Cell.

[53]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.

[54]  Rolf Ohlsson,et al.  CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Grewal,et al.  A Role for TFIIIC Transcription Factor Complex in Genome Organization , 2006, Cell.

[56]  L. Wallrath,et al.  TFIIIC Boxes in the Genome , 2006, Cell.

[57]  D. Haldar,et al.  tRNA genes as chromatin barriers , 2006, Nature Structural &Molecular Biology.

[58]  Kristin C. Scott,et al.  A Heterochromatin Barrier Partitions the Fission Yeast Centromere into Discrete Chromatin Domains , 2006, Current Biology.

[59]  Rolf Ohlsson,et al.  CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab‐8 insulator , 2005, EMBO reports.

[60]  K. Struhl,et al.  Genome-Wide Occupancy Profile of the RNA Polymerase III Machinery in Saccharomyces cerevisiae Reveals Loci with Incomplete Transcription Complexes , 2004, Molecular and Cellular Biology.

[61]  G. Felsenfeld,et al.  CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. , 2004, Molecular cell.

[62]  D. Engelke,et al.  Nucleolar Clustering of Dispersed tRNA Genes , 2003, Science.

[63]  Cameron S. Osborne,et al.  Retrovirus silencer blocking by the cHS4 insulator is CTCF independent. , 2003, Nucleic acids research.

[64]  P. Schedl,et al.  Protein:protein interactions and the pairing of boundary elements in vivo. , 2003, Genes & development.

[65]  Félix Recillas-Targa,et al.  Position-effect protection and enhancer blocking by the chicken β-globin insulator are separable activities , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  V. Corces,et al.  Interactions between the Su(Hw) and Mod(mdg4) proteins required for gypsy insulator function , 2001, The EMBO journal.

[67]  R. Kamakaka,et al.  RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae , 2001, The EMBO journal.

[68]  V. Corces,et al.  A chromatin insulator determines the nuclear localization of DNA. , 2000, Molecular cell.

[69]  P. Schedl,et al.  The Zw5 protein, a component of the scs chromatin domain boundary, is able to block enhancer-promoter interaction. , 1999, Genes & development.

[70]  J. Rine,et al.  The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. , 1999, Genes & development.

[71]  M. Levine,et al.  GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo. , 1998, Genes & development.

[72]  V. Corces,et al.  A drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation , 1995, Cell.

[73]  K. Zhao,et al.  Visualization of chromosomal domains with boundary element-associated factor BEAF-32 , 1995, Cell.

[74]  R. Kellum,et al.  A group of scs elements function as domain boundaries in an enhancer-blocking assay , 1992, Molecular and cellular biology.

[75]  Paul Schedl,et al.  A position-effect assay for boundaries of higher order chromosomal domains , 1991, Cell.

[76]  A. Udvardy,et al.  The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. , 1985, Journal of molecular biology.