Chapter 3 – Transmitter and Receiver Design for Amplified Lightwave Systems

[1]  P. Humblet,et al.  On the bit error rate of lightwave systems with optical amplifiers , 1991 .

[2]  Dietrich Marcuse Computer simulation of laser photon fluctuations: Single-cavity laser results , 1984 .

[3]  R. S. Vodhanel,et al.  Long-term wavelength drift of the order of —0.01 nm/yr for 15 free-running DFB laser modules , 1994 .

[4]  P. Andersson,et al.  Generation of BER floors from laser diode chirp noise , 1992 .

[5]  M. Hogdal,et al.  Comparison of electroabsorption and Mach-Zehnder modulators for more than 300 km of 2.488-Gbit/s unrepeatered transmission , 1995 .

[6]  J. A. Nagel,et al.  Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic , 1993 .

[7]  D. Marcuse Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion , 1991 .

[8]  G. Nykolak,et al.  Remotely pumped erbium-doped fiber amplifiers for repeaterless submarine systems , 1995, IEEE Photonics Technology Letters.

[9]  Mark Andrew Newhouse,et al.  Large effective area dispersion-shifted fibers with dual-ring index profiles , 1996, Optical Fiber Communications, OFC..

[10]  R. Linke,et al.  Modulation induced transient chirping in single frequency lasers , 1985 .

[11]  P. C. Li,et al.  Frequency stability of DFB lasers used in FDM mulit-location networks , 1992 .

[12]  E. M. Kimber,et al.  Chirp and system performance of integrated laser modulators , 1995, IEEE Photonics Technology Letters.

[13]  D. A. Fishman Performance of single-electrode 1.5- mu m DFB lasers in noncoherent FSK transmission , 1991 .

[14]  K. Shore,et al.  The effect of external optical feedback on the turn-on delay statistics of laser diodes under pseudorandom modulation , 1992, IEEE Photonics Technology Letters.

[15]  M. Aoki,et al.  InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD , 1993 .

[16]  J. J. Veselka,et al.  Dispersion penalty reduction using an optical modulator with adjustable chirp , 1991 .

[17]  Jichai Jeong,et al.  Aging-induced wavelength shifts in 1.5-/spl mu/m DFB lasers , 1994, IEEE Photonics Technology Letters.

[18]  M. J. O'Mahony,et al.  A transport network layer based on optical network elements , 1993 .

[19]  R. A. Jensen,et al.  Novel techinque for monitoring long-haul undersea optical-amplifier systems , 1994 .

[20]  K. Uomi,et al.  Advantage of 1.55 mu m InGaAs/InGaAsP MQW-DFB lasers for reducing waveform degradation and dispersion penalty for 2.5 Gb/s long-span normal fiber transmission , 1992, IEEE Photonics Technology Letters.

[21]  D. Fishman Elusive bit-error-rate floors resulting from transient partitioning in 1.5- mu m DFB lasers , 1990 .

[22]  N. Suzuki,et al.  Comparison of effective /spl alpha/ parameters for multiquantum-well electroabsorption modulators , 1995, IEEE Photonics Technology Letters.

[23]  R. P. Gnall,et al.  A frequency reference photonic integrated circuit for WDM with low polarization dependence , 1993, IEEE Photonics Technology Letters.

[24]  Neal S. Bergano,et al.  Polarization-scrambling-induced timing jitter in optical-amplifier systems , 1995 .

[25]  Richard V. Penty,et al.  Improving the system performance of integrated MQW laser modulators with negative chirp , 1995 .

[26]  Govind P. Agrawal,et al.  Dispersion penalty for 1.3 mu m lightwave systems with multimode semiconductor lasers , 1988 .

[27]  Clinton Randy Giles,et al.  Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber. , 1988 .

[28]  N. S. Bergano,et al.  Margin measurements in optical amplifier system , 1993, IEEE Photonics Technology Letters.

[29]  Donald G. Duff,et al.  Computer-Aided Design of Digital Lightwave Systems , 1984, IEEE J. Sel. Areas Commun..

[30]  B. Wedding,et al.  New method for optical transmission beyond dispersion limit , 1992 .

[31]  A. L. Kellner,et al.  High frequency saturation measurements of an InGaAs/InP waveguide photodetector , 1993 .

[32]  R. M. Derosier,et al.  Four-photon mixing and high-speed WDM systems , 1995 .

[33]  A.R. Chraplyvy,et al.  End-to-end equalization experiments in amplified WDM lightwave systems , 1993, IEEE Photonics Technology Letters.

[34]  F.F. Ruhl,et al.  Explicit expressions for the receiver sensitivity and system penalties of optically preamplified direct-detection systems , 1993, IEEE Photonics Technology Letters.

[35]  S. W. Granlund,et al.  Optical Preamplifier Receivers: Application to Long-Haul Digital Transmission , 1994 .

[36]  Shu Yamamoto,et al.  Analysis of chirp power penalty in 1.55-µm DFB-LD high-speed optical fiber transmission systems , 1987 .

[37]  D. G. Duff,et al.  Effect of intersymbol interference on signal-to-noise measurements , 1995 .

[38]  D. Marcuse,et al.  Effect of fiber nonlinearity on long-distance transmission , 1991 .

[39]  R. W. Tkach,et al.  8 Gb/s FSK Modulation of DFB Lasers with Optical Demodulation , 1989 .

[40]  D. Vassilovski,et al.  Quantum capture and escape in quantum-well lasers-implications on direct modulation bandwidth limitations , 1992, IEEE Photonics Technology Letters.

[41]  Daniel A. Fishman,et al.  1.7 Gb/s Lightware Transmission Field Experiment , 1986, ICC.

[43]  D. Marcuse Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers , 1990 .

[44]  U. Koren,et al.  2.5 Gb/s transmission over 674 km at multiple wavelengths using a tunable DBR laser with an integrated electroabsorption modulator , 1993, IEEE Photonics Technology Letters.

[45]  Kazuo Hagimoto,et al.  Ultrahigh-speed driverless MQW intensity modulator, and 20 Gbit/s, 100 km transmission experiments , 1992 .

[46]  1.55 mu m, 2.5 Gb/s direct detection repeaterless transmission of 160 km nondispersion shifted fiber , 1990, IEEE Photonics Technology Letters.

[47]  B. W. Hakki,et al.  Dispersion and noise of 1.3 mu m multimode lasers in microwave digital systems , 1989 .

[48]  N. Suzuki,et al.  Simultaneous compensation of laser chirp, Kerr effect, and dispersion in 10-Gb/s long-haul transmission systems , 1993 .

[49]  Haruhisa Soda,et al.  Time-resolved chirp measurement of modulator-integrated DFB LD by using a fiber interferometer , 1995 .

[50]  Influence of extinction ratio on performance of optical receivers incorporating laser preamplifiers , 1989 .

[51]  Y. Ogawa,et al.  Negative-chirp electroabsorption modulator using low-wavelength detuning , 1995, IEEE Photonics Technology Letters.

[52]  P.J.A. Thijs,et al.  27-dB gain unidirectional 1300-nm polarization-insensitive multiple quantum well laser amplifier module , 1994, IEEE Photonics Technology Letters.

[53]  P. Emplit,et al.  Limitations in long haul IM/DD optical fibre systems caused by chromatic dispersion and nonlinear Kerr effect , 1990 .

[54]  N. Olsson Lightwave systems with optical amplifiers , 1989 .

[55]  Low-chirp integrated EA-modulator/DFB laser grown by selective-area MOVPE , 1994, Proceedings of IEEE 14th International Semiconductor Laser Conference.

[56]  D. Gray,et al.  Electrooptic polarization scramblers for optically amplified long-haul transmission systems , 1994, IEEE Photonics Technology Letters.

[57]  A. Chraplyvy,et al.  WDM systems with unequally spaced channels , 1995 .

[58]  F. Devaux,et al.  On the transmission performances and the chirp parameter of a multiple-quantum-well electroabsorption modulator , 1994 .

[59]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[60]  Govind P. Agrawal,et al.  Effect of a four-wave mixing on multichannel amplification in semiconductor laser amplifiers , 1990 .

[61]  Etsuko Ishikawa,et al.  26 dB amplification at 1.31 µm in a novel Pr3+-doped InF3/GaF3-based fiber , 1995 .

[62]  D. Fishman Design and performance of externally modulated 1.5- mu m laser transmitter in the presence of chromatic dispersion , 1993 .

[63]  A. Chraplyvy,et al.  Fading in lightwave systems due to polarization-mode dispersion , 1990, IEEE Photonics Technology Letters.

[64]  D. G. Duff,et al.  Measurements and simulation of multipath interference for 1.7-Gb/s lightwave transmission systems using single- and multifrequency lasers , 1990 .

[65]  B. Heffner,et al.  Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices , 1992, IEEE Photonics Technology Letters.

[66]  N. Edagawa,et al.  The experimental study of the effect of fiber chromatic dispersion upon IM-DD ultra-long distance optical communication systems with Er-doped fiber amplifiers using a 1000 km fiber loop , 1994 .

[67]  J. Binder,et al.  10 Gbit/s-dispersion optimized transmission at 1.55 /spl mu/m wavelength on standard single mode fiber , 1994, IEEE Photonics Technology Letters.

[68]  C. R. Giles,et al.  Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers , 1991 .

[69]  N. S. Bergano,et al.  Bit-synchronous polarisation and phase modulation scheme for improving the performance of optical amplifier transmission systems , 1996 .

[70]  R. W. Tkach,et al.  Phase modulation to amplitude modulation conversion of CW laser light in optical fibres , 1986 .

[71]  Steven K. Korotky,et al.  529 km unrepeatered transmission at 2.488 GBit/s using dispersion compensation, forward error correction, and remote post- and pre-amplifiers pumped by diode-pumped Raman lasers , 1995 .

[72]  J. H. Winters,et al.  Adaptive nonlinear cancellation for high-speed fiber-optic systems , 1992 .

[73]  E. Lichtman Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems , 1995 .

[74]  T. Durhuus,et al.  All optical wavelength conversion by SOA's in a Mach-Zehnder configuration , 1994, IEEE Photonics Technology Letters.

[75]  C. Joergensen,et al.  Wavelength conversion devices , 1996, Optical Fiber Communications, OFC..

[76]  R. M. Derosier,et al.  A 1.5- mu m laser package frequency-locked with a novel miniature discharge lamp , 1991, IEEE Photonics Technology Letters.

[77]  Steven K. Korotky,et al.  2.488-Gb/s Unrepeatered Transmission over 529 km using Remotely Pumped Post- and Pre-Amplifiers, Forward Error Correction, and Dispersion Compensation , 1995 .

[78]  V. J. Mazurczyk Polarization Hole Burning in Erbium Doped Fiber Amplifiers. , 1993 .