Normal Bases over Finite Fields

Interest in normal bases over finite fields stems both from mathematical theory and practical applications. There has been a lot of literature dealing with various properties of normal bases (for finite fields and for Galois extension of arbitrary fields). The advantage of using normal bases to represent finite fields was noted by Hensel in 1888. With the introduction of optimal normal bases, large finite fields, that can be used in secure and efficient implementation of several cryptosystems, have recently been realized in hardware. The present thesis studies various theoretical and practical aspects of normal bases in finite fields. We first give some characterizations of normal bases. Then by using linear algebra, we prove that Fqn has a basis over Fq such that any element in Fq represented in this basis generates a normal basis if and only if some groups of coordinates are not simultaneously zero. We show how to construct an irreducible polynomial of degree 2 with linearly independent roots over Fq for any integer n and prime power q. We also construct explicitly an irreducible polynomial in Fp[x] of degree p with linearly independent roots for any prime p and positive integer n. We give a new characterization of the minimal polynomial of α for any integer t when the minimal polynomial of α is given. When q ≡ 3 mod 4, we present an explicit complete factorization of x2n − 1 over Fq for any integer n. The principal result in the thesis is the complete determination of all optimal normal bases in finite fields, which confirms a conjecture by Mullin, Onyszchuk, Vanstone and Wilson. Finally, we present some explicit constructions of normal bases with low complexity and some explicit constructions of self-dual normal bases.

[1]  J. Serret Cours d'Algebre superieure , 1885 .

[2]  Kurt Hensel Ueber die Darstellung der Zahlen eines Gattungsbereiches für einen beliebigen Primdivisor. , 1888 .

[3]  E. Noether,et al.  Normalbasis bei Körpern ohne höhere Verzweigung. , 1932 .

[4]  M. Deuring Galoissche Theorie und Darstellungstheorie , 1933 .

[5]  O. Ore Contributions to the theory of finite fields , 1934 .

[6]  H. Davenport,et al.  ON PRIMITIVE ROOTS IN FINITE FIELDS , 1937 .

[7]  M. Krasner Sur la représentation exponentielle dans les corps relativement galoisiens de nombres p-adiques , 1939 .

[8]  R. Tennant Algebra , 1941, Nature.

[9]  S. Perlis,et al.  Normal bases of cyclic fields of prime-power degree , 1942 .

[10]  L. Carlitz,et al.  Primitive roots in a finite field , 1952 .

[11]  Helen Murray Roberts,et al.  Elements of mathematics , 1956 .

[12]  A. Adrian Albert,et al.  Fundamental Concepts of Higher Algebra , 1958 .

[13]  Jean-Pierre Azra,et al.  Écrits et mémoires mathématiques d'Évariste Galois , 1964 .

[14]  Generation of Irreducible Polynomials Over a Finite Field , 1965 .

[15]  T. Storer Cyclotomy and difference sets , 1967 .

[16]  H. Davenport Bases for Finite Fields , 1968 .

[17]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[18]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[19]  Abraham Lempel,et al.  Matrix Factorization Over GF(2) and Trace-Orthogonal Bases of GF(2n) , 1975, SIAM J. Comput..

[20]  A Proof of the Normal Basis Theorem , 1975 .

[21]  J. Gordon Very simple method to find the minimum polynomial of an arbitrary nonzero element of a finite field , 1976 .

[22]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[23]  Abraham Lempel,et al.  Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields , 1980, SIAM J. Comput..

[24]  J. D. Lipson Elements of algebra and algebraic computing , 1981 .

[25]  On Modular Group Rings, Normal Bases, and Fixed Points , 1981 .

[26]  Elwyn R. Berlekamp,et al.  Bit-serial Reed - Solomon encoders , 1982, IEEE Transactions on Information Theory.

[27]  I. Kersten,et al.  Galoiserweiterungen der ordnung p mit normalbasis , 1982 .

[28]  Linear Mappings and the Existence of a Normal Basis , 1982 .

[29]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[30]  K. Imamura,et al.  On self-complementary bases of GF(qn) over GF(q) , 1983 .

[31]  T. Beth,et al.  Zur Algebraischen Diskreten Fourier-Transformation , 1983 .

[32]  P. E. Conner,et al.  A Survey of Trace Forms of Algebraic Number Fields , 1984 .

[33]  H. Lenstra,et al.  Primalitv Testing and Jacobi Sums , 2010 .

[34]  B. Kahn Classes de Stiefel-Whitney de Formes quadratiques et de représentations galoisiennes réelles , 1984 .

[35]  Trieu-Kien Truong,et al.  Systolic Multipliers for Finite Fields GF(2m) , 1984, IEEE Transactions on Computers.

[36]  Jean-Pierre Serre L'invariant de Witt de la forme Tr(x2) , 1984 .

[37]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[38]  Thomas Beth,et al.  Generalizing the discrete fourier transform , 1985, Discret. Math..

[39]  Jacques Calmet Algebraic algorithms in GF(q) , 1985, Discret. Math..

[40]  Trieu-Kien Truong,et al.  VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.

[41]  A normal basis theorem for infinite Galois extensions , 1985 .

[42]  Walter Fumy,et al.  Orthogonal Transform Encoding of Cyclic Codes , 1985, AAECC.

[43]  Jeffrey Shallit,et al.  Factoring with cyclotomic polynomials , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[44]  Heinz Lüneburg,et al.  On a Little but Useful Algorithm , 1985, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.

[45]  Leonard M. Adleman,et al.  Finding irreducible polynomials over finite fields , 1986, STOC '86.

[46]  Dieter Blessenohl,et al.  Eine verschärfung des satzes von der normalbasis , 1986 .

[47]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[48]  Stafford E. Tavares,et al.  A Fast VLSI Multiplier for GF(2m) , 1986, IEEE J. Sel. Areas Commun..

[49]  H. Lenstra,et al.  Primitive normal bases for finite fields , 1987 .

[50]  Hans F. de Groote Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.

[51]  Trieu-Kien Truong,et al.  A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases , 1988, IEEE Trans. Computers.

[52]  Štefan Schwarz Irreducible polynomials over finite fields with linearly independent roots , 1988 .

[53]  V M Sidel'nikov ON NORMAL BASES OF A FINITE FIELD , 1988 .

[54]  Edoardo D. Mastrovito,et al.  VLSI Designs for Multiplication over Finite Fields GF (2m) , 1988, AAECC.

[55]  Dieter Gollmann,et al.  Symmetry and Duality in Normal Basis Multiplication , 1988, AAECC.

[56]  A. Lempel Characterization and synthesis of self-complementary normal bases in finite fields , 1988 .

[57]  Abraham Lempel,et al.  Self-Complementary Normal Bases in Finite Fields , 1988, SIAM J. Discret. Math..

[58]  Construction of normal bases in cyclic extensions of a field , 1988 .

[59]  Victor Shoup,et al.  New algorithms for finding irreducible polynomials over finite fields , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[60]  David G. Cantor,et al.  On arithmetical algorithms over finite fields , 1989, Journal of combinatorial theory. Series A.

[61]  Gui Liang Feng A VLSI Architecture for Fast Inversion in GF(2^m) , 1989, IEEE Trans. Computers.

[62]  Ronald C. Mullin,et al.  Optimal normal bases in GF(pn) , 1989, Discret. Appl. Math..

[63]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[64]  Masao Kasahara,et al.  Efficient bit-serial multiplication and the discrete-time Wiener-Hopf equation over finite fields , 1989, IEEE Trans. Inf. Theory.

[65]  CONSTRUCTION OF POLYNOMIALS IRREDUCIBLE OVER A FINITE FIELD WITH LINEARLY INDEPENDENT ROOTS , 1989 .

[66]  Joel V. Brawley,et al.  Infinite algebraic extensions of finite fields , 1989 .

[67]  H. Zassenhaus,et al.  Algorithmic algebraic number theory: Preface , 1989 .

[68]  Charles C. Wang,et al.  An Algorithm to Design Finite Field Multipliers Using a Self-Dual Normal Basis , 1987, IEEE Trans. Computers.

[69]  J. A. L. Thiong Note for computing the minimum polynomial of elements in large finite fields , 1989 .

[70]  T. Rosati A high speed data encryption processor for public key cryptography , 1989, 1989 Proceedings of the IEEE Custom Integrated Circuits Conference.

[71]  Antonio Pincin,et al.  Bases for finite fields and a canonical decomposition for a normal basis generator , 1989 .

[72]  Ian F. Blake,et al.  Low complexity normal bases , 1989, Discret. Appl. Math..

[73]  David G. Gantor On arithmetical algorithms over finite fields , 1989 .

[74]  Gérald E. Séguin,et al.  Low complexity normal bases for F2mn , 1990, Discret. Appl. Math..

[75]  T. Beth,et al.  Selbstduale Normalbasen überGF(q) , 1990 .

[76]  Scott A. Vanstone,et al.  On the Number of Self-Dual Bases of GF(q m ) Over GF(q) , 1990 .

[77]  E. Bayer-Fluckiger Forms in odd degree extensions and self-dual normal bases , 1990 .

[78]  Dieter Gollmann,et al.  VLSI Design for Exponentiation in GF (2n) , 1990, AUSCRYPT.

[79]  Ian F. Blake,et al.  Bit Serial Multiplication in Finite Fields , 1990, SIAM J. Discret. Math..

[80]  Alfred Wassermann Konstruktion von Normalbasen , 1990 .

[81]  S A Stepanov,et al.  ON THE CONSTRUCTION OF A PRIMITIVE NORMAL BASIS IN A FINITE FIELD , 1990 .

[82]  Dingyi Pei,et al.  A VLSI DEsign for Computing Exponentiations in GF(2^m) and Its Application to Generate Pseudorandom Number Sequences , 1990, IEEE Trans. Computers.

[83]  Supplement zu “eine verschärfung des Satzes von der Normalbasis” , 1990 .

[84]  Gadiel Seroussi,et al.  Generalizations of the Normal Basis Theorem of Finite Fields , 1990, SIAM J. Discret. Math..

[85]  Menouer Diab Systolic Architectures for Multiplication over Finite Field GF(2m) , 1990, AAECC.

[86]  Joachim von zur Gathen,et al.  Constructing Normal Bases in Finite Fields , 1990, J. Symb. Comput..

[87]  Victor Shoup,et al.  Searching for primitive roots in finite fields , 1990, STOC '90.

[88]  Jeffrey Shallit,et al.  Factor refinement , 1993, SODA '90.

[89]  Victor Shoup On the Deterministic Complexity of Factoring Polynomials over Finite Fields , 1990, Inf. Process. Lett..

[90]  Marc Rybowicz,et al.  Search of primitive polynomials over finite fields , 1990 .

[91]  H. Lenstra Finding isomorphisms between finite fields , 1991 .

[92]  Joan Borrell,et al.  Improving the Time Complexity of the Computation of Irreducible and Primitive Polynomials in Finite Fields , 1991, AAECC.

[93]  Abraham Lempel,et al.  Explicit formulas for self-complementary normal bases in certain finite fields , 1991, IEEE Trans. Inf. Theory.

[94]  S. A. Stepanov,et al.  On the construction of primitive elements and primitive normal bases in a finite field , 1991 .

[95]  Douglas R. Stinson On bit-serial multiplication and dual bases in GF(2m) , 1991, IEEE Trans. Inf. Theory.

[96]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[97]  Shuhong Gao,et al.  Optimal normal bases , 1992, Des. Codes Cryptogr..

[98]  Safwan Akbik,et al.  Normal generators of finite fields , 1992 .

[99]  D. Jungnickel Finite fields : structure and arithmetics , 1993 .

[100]  Dieter Jungnickel,et al.  Trace-Orthogonal Normal Bases , 1993, Discret. Appl. Math..

[101]  Gary L. Mullen,et al.  Finite fields, coding theory, and advances in communications and computing , 1993 .

[102]  Hans Peter Schlickewei,et al.  Algorithms to Construct Normal Bases of Cyclic Number Fields , 1993 .

[103]  Gordon B. Agnew,et al.  An Implementation of Elliptic Curve Cryptosystems Over F2155 , 1993, IEEE J. Sel. Areas Commun..

[104]  R. C. Mullin A characterization of the extremal distributions of optimal normal bases , 1993 .

[105]  Ian F. Blake,et al.  Normal and Self-dual Normal Bases from Factorization of c xq+1 + d xq - ax - b , 1994, SIAM J. Discret. Math..

[106]  Dickson Polynomials and Irreducible Polynomials Over Finite Fields , 1994 .

[107]  H. Niederreiter,et al.  Introduction to finite fields and their applications: Factorization of Polynomials , 1994 .

[108]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .