A linearly approximated iterative Gaussian decomposition method for waveform LiDAR processing

Abstract Full-waveform LiDAR (FWL) decomposition results often act as the basis for key LiDAR-derived products, for example canopy height, biomass and carbon pool estimation, leaf area index calculation and under canopy detection. To date, the prevailing method for FWL product creation is the Gaussian Decomposition (GD) based on a non-linear Levenberg-Marquardt (LM) optimization for Gaussian node parameter estimation. GD follows a “greedy” approach that may leave weak nodes undetected, merge multiple nodes into one or separate a noisy single node into multiple ones. In this manuscript, we propose an alternative decomposition method called Linearly Approximated Iterative Gaussian Decomposition (LAIGD method). The novelty of the LAIGD method is that it follows a multi-step “slow-and-steady” iterative structure, where new Gaussian nodes are quickly discovered and adjusted using a linear fitting technique before they are forwarded for a non-linear optimization. Two experiments were conducted, one using real full-waveform data from NASA’s land, vegetation, and ice sensor (LVIS) and another using synthetic data containing different number of nodes and degrees of overlap to assess performance in variable signal complexity. LVIS data revealed considerable improvements in RMSE (44.8% lower), RSE (56.3% lower) and rRMSE (74.3% lower) values compared to the benchmark GD method. These results were further confirmed with the synthetic data. Furthermore, the proposed multi-step method reduces execution times in half, an important consideration as there are plans for global coverage with the upcoming Global Ecosystem Dynamics Investigation LiDAR sensor on the International Space Station.

[1]  Benoit Rivard,et al.  Delineation of secondary succession mechanisms for tropical dry forests using LiDAR , 2011 .

[2]  Norbert Pfeifer,et al.  B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data , 2011 .

[3]  Uwe Stilla,et al.  Laser pulse analysis for reconstruction and classification of urban objects , 2003 .

[4]  J. Hyyppä,et al.  Automatic detection of harvested trees and determination of forest growth using airborne laser scanning , 2004 .

[5]  Bogdan M. Strimbu,et al.  A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data , 2015 .

[6]  Guoqing Sun,et al.  Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales , 2013 .

[7]  Yoshiki Yamagata,et al.  Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan , 2013 .

[8]  Markus Hollaus,et al.  Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data , 2012 .

[9]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[10]  Guoqing Sun,et al.  Landcover attributes from ICESat GLAS data in Central Siberia , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[11]  Claudia Künzer,et al.  Regularizing method for the determination of the backscatter cross section in lidar data. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[13]  Bryan Blair,et al.  Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica , 2012 .

[14]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[15]  R. Nelson,et al.  Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error , 2013 .

[16]  Guoqing Sun,et al.  Forest biomass mapping from lidar and radar synergies , 2011 .

[17]  J. Blair,et al.  Modeling laser altimeter return waveforms over complex vegetation using high‐resolution elevation data , 1999 .

[18]  W. Wagner,et al.  Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner , 2006 .

[19]  Craig Glennie,et al.  Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification , 2015 .

[20]  Guoqing Sun,et al.  Modeling lidar returns from forest canopies , 2000, IEEE Trans. Geosci. Remote. Sens..

[21]  Nathan T. Kurtz,et al.  Arctic Sea Ice Freeboard Retrieval With Waveform Characteristics for NASA's Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS) , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Asa Persson,et al.  VISUALIZATION AND ANALYSIS OF FULL-WAVEFORM AIRBORNE LASER SCANNER DATA , 2005 .

[23]  J. Klein,et al.  Small sample moments of some estimators of the variance of the Kaplan−Meier and Nelson-Aalen estimators , 1991 .

[24]  Qi Chen Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data , 2010 .

[25]  Nanny Wermuth,et al.  Multivariate Statistical Analysis , 2011, International Encyclopedia of Statistical Science.

[26]  Uwe Stilla,et al.  Range determination with waveform recording laser systems using a Wiener Filter , 2006 .

[27]  Jungho Im,et al.  A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification , 2015 .

[28]  Congcong Li,et al.  Forest Canopy Height Extraction in Rugged Areas With ICESat/GLAS Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Teemu Hakala,et al.  Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification , 2011 .

[30]  Beata Csatho,et al.  Fusion of multi-sensor surface elevation data for improved characterization of rapidly changing outlet glaciers in Greenland , 2014 .

[31]  Victor M. Becerra,et al.  Validation of Canopy Height Profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment , 2015 .

[32]  J. Bryan Blair,et al.  Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion , 2011 .

[33]  R. Nelson,et al.  Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States , 2015 .

[34]  Benoit Rivard,et al.  LIDAR remote sensing for secondary Tropical Dry Forest identification , 2012 .

[35]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[36]  Giorgos Mountrakis,et al.  An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data , 2014 .

[37]  C. Mallet,et al.  Processing full-waveform lidar data: Modelling raw signals , 2015 .

[38]  Frédéric Bretar,et al.  Full-waveform topographic lidar : State-of-the-art , 2009 .

[39]  K. Tansey,et al.  Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas , 2010 .

[40]  Dorota A. Grejner-Brzezinska,et al.  Compression strategies for LiDAR waveform cube , 2015 .

[41]  Juha Hyyppä,et al.  Remote sensing methods for power line corridor surveys , 2016 .

[42]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[43]  Małgorzata Słota,et al.  Full-waveform data for building roof step edge localization , 2015 .

[44]  S. Hensley,et al.  A study of forest biomass estimates from lidar in the northern temperate forests of New England , 2013 .

[45]  Uwe Stilla,et al.  Measuring and processing the waveform of laser pulses , 2005 .

[46]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[47]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[48]  G. Vosselman,et al.  Single and two epoch analysis of ICESat full waveform data over forested areas , 2008 .

[49]  J. Blair,et al.  The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography , 1999 .

[50]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[51]  Guoqing Sun,et al.  ICESat GLAS Data for Urban Environment Monitoring , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Philip Lewis,et al.  A threshold insensitive method for locating the forest canopy top with waveform lidar , 2011 .

[53]  Alan H. Strahler,et al.  Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA , 2014 .

[54]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems , 2005 .

[55]  Giorgos Mountrakis,et al.  Estimation of above-ground forest biomass using metrics based on Gaussian decomposition of waveform lidar data , 2015 .

[56]  Erik Næsset,et al.  The uncertainty of biomass estimates from LiDAR and SAR across a boreal forest structure gradient , 2014 .

[57]  Marinos Kavouras,et al.  An overview of 21 global and 43 regional land-cover mapping products , 2015 .

[58]  Uwe Soergel,et al.  Relevance assessment of full-waveform lidar data for urban area classification , 2011 .

[59]  Giorgos Mountrakis,et al.  A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research , 2016 .

[60]  Peng Liu,et al.  A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry , 2015 .

[61]  J. Eitel,et al.  Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys , 2012 .

[62]  J. Reitberger,et al.  3D segmentation of full waveform LiDAR data for single tree detection using normalized cut , 2008 .

[63]  R. Pardini,et al.  Habitat structure and food resources for wildlife across successional stages in a tropical forest , 2012 .

[64]  Xiaohuan Xi,et al.  Wavelet Analysis for ICESat/GLAS Waveform Decomposition and Its Application in Average Tree Height Estimation , 2013, IEEE Geoscience and Remote Sensing Letters.

[65]  M. Ducey,et al.  Multivariate statistical analysis of asynchronous lidar data and vegetation models in a neotropical forest , 2014 .

[66]  Giorgos Mountrakis,et al.  Ground peak identification in dense shrub areas using large footprint waveform LiDAR and Landsat images , 2015, Int. J. Digit. Earth.

[67]  W. Wagner,et al.  3 D VEGETATION MAPPING AND CLASSIFICATION USING FULL-WAVEFORM LASER SCANNING , 2006 .

[68]  J. Bryan Blair,et al.  Decomposition of laser altimeter waveforms , 2000, IEEE Trans. Geosci. Remote. Sens..

[69]  Uwe Stilla,et al.  Waveform processing of laser pulses for reconstruction of surfaces in urban areas , 2005 .

[70]  Wolfgang Wagner,et al.  Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts , 2010 .

[71]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .