Transform decomposition method of pruning the FHT algorithms

Abstract In this paper, we have applied the transform decomposition (TD) technique of pruning the fast Fourier transform (FFT) flow graph to the fast Hartley transform (FHT) flow graph. We have shown that efficient pruning is possible when the number of output points is limited. Any arbitrary band of spectra can also be computed using the method proposed.

[1]  Douglas L. Jones,et al.  On computing the discrete Hartley transform , 1985, IEEE Trans. Acoust. Speech Signal Process..

[2]  D. Skinner Pruning the decimation in-time FFT algorithm , 1976 .

[3]  J. Markel,et al.  FFT pruning , 1971 .

[4]  C. Burrus Index mappings for multidimensional formulation of the DFT and convolution , 1977 .

[5]  C. Sidney Burrus,et al.  On computing the split-radix FFT , 1986, IEEE Trans. Acoust. Speech Signal Process..

[6]  T. V. Sreenivas,et al.  FFT algorithm for both input and output pruning , 1979 .

[7]  P. Duhamel,et al.  `Split radix' FFT algorithm , 1984 .

[8]  K. M. M. Prabhu,et al.  Fast Hartley transform pruning , 1991, IEEE Trans. Signal Process..

[9]  C. Sidney Burrus,et al.  Efficient computation of the DFT with only a subset of input or output points , 1993, IEEE Trans. Signal Process..