SKIing with DOLCE: toward an e-Science Knowledge Infrastructure

An ontology of general science knowledge (SKIo) is developed to enhance machine representation and use of scientific theories in emerging e-Science Knowledge Infrastructures. SKIo specializes the DOLCE foundational ontology with science knowledge primitives, such as science theory, model, data, prediction, and induction. These are arranged to reflect the complex knowledge structures used in science, such as scientific ideas playing different roles within and between theories. SKIo is encoded with OWL-DL, uses the DOLCE Descriptions and Situations module, and provides defining conditions for its primitives to enable an extensible bridge between DOLCE and domain science ontologies. An application to environmental theories is demonstrated, and its utility to other natural sciences is promising.

[1]  H. Lieth Modeling the Primary Productivity of the World , 1975 .

[2]  P. Thagard,et al.  Computational Philosophy of Science , 1988 .

[3]  P. Langley,et al.  Computational Models of Scientific Discovery and Theory Formation , 1990 .

[4]  Ying-Ping Wang,et al.  Potential CO2-Enhanced Carbon Storage by the Terrestrial Biosphere , 1992 .

[5]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[6]  Anthony W. King,et al.  In search of the missing carbon sink : a model of terrestrial biospheric response to land-use change and atmospheric CO2 , 1995 .

[7]  I. C. Prentice,et al.  BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types , 1996 .

[8]  Asunción Gómez-Pérez,et al.  Knowledge Management through Ontologies , 1998, PAKM.

[9]  Christian Freksa,et al.  Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science , 1999, Lecture Notes in Computer Science.

[10]  Dennis Baldocchi,et al.  On Measuring Net Ecosystem Carbon Exchange Over Tall Vegetation on Complex Terrain , 2000, Boundary-Layer Meteorology.

[11]  Pat Langley The computational support of scientific discovery , 2000, Int. J. Hum. Comput. Stud..

[12]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[13]  Stuart C. Reviewer-Shapiro Review of Knowledge representation: logical, philosophical, and computational foundations by John F. Sowa. Brooks/Cole 2000. , 2001 .

[14]  Alexander Hars,et al.  Designing Scientific Knowledge Infrastructures: The Contribution of Epistemology , 2001, Inf. Syst. Frontiers.

[15]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[16]  Nicola Guarino,et al.  Sweetening WORDNET with DOLCE , 2003, AI Mag..

[17]  Aldo Gangemi,et al.  Understanding the Semantic Web through Descriptions and Situations , 2003, OTM.

[18]  James Hendler,et al.  Science and the Semantic Web , 2003, Science.

[19]  Alexander Hars From Publishing to Knowledge Networks: Reinventing Online Knowledge Infrastructures , 2003 .

[20]  Alexa T. McCray,et al.  An Upper-Level Ontology for the Biomedical Domain , 2003, Comparative and functional genomics.

[21]  Frank van Harmelen,et al.  Web Ontology Language , 2004 .

[22]  Barry Smith,et al.  Biodynamic ontology: applying BFO in the biomedical domain. , 2004, Studies in health technology and informatics.

[23]  Frank van Harmelen,et al.  Web Ontology Language: OWL , 2004, Handbook on Ontologies.

[24]  Timothy M. Lenton,et al.  An analysis of some diverse approaches to modelling terrestrial net primary productivity , 2004 .

[25]  Nicola Guarino,et al.  Social Roles and their Descriptions , 2004, KR.

[26]  Barry Smith,et al.  SNAP and SPAN: Towards Dynamic Spatial Ontology , 2004, Spatial Cogn. Comput..

[27]  Aldo Gangemi,et al.  Inflammation ontology design pattern: an exercise in building a core biomedical ontology with descriptions and situations. , 2004, Studies in health technology and informatics.

[28]  Michio Kaku,et al.  Einstein's Cosmos: How Albert Einstein's Vision Transformed Our Understanding of Space and Time , 2004 .

[29]  Anne E. Trefethen,et al.  Cyberinfrastructure for e-Science , 2005, Science.

[30]  Robert G. Raskin,et al.  Knowledge representation in the semantic web for Earth and environmental terminology (SWEET) , 2005, Comput. Geosci..

[31]  Charles Doutriaux,et al.  Coupled Climate Model appraisal: A benchmark for future studies , 2006 .

[32]  J. Sowa The challenge of knowledge soup , 2006 .

[33]  Bertram Ludäscher,et al.  Managing scientific data: From data integration to scientific workflows* , 2006 .

[34]  Ross D King,et al.  An ontology of scientific experiments , 2006, Journal of The Royal Society Interface.

[35]  Thomas Bittner From Top-Level to Domain Ontologies: Ecosystem Classifications as a Case Study , 2007, COSIT.

[36]  Andrea C. Schalley,et al.  Formal representation of concepts: The Suggested Upper Merged Ontology and its use in linguistics , 2007 .

[37]  Hongfang Liu,et al.  Framework for a Protein Ontology , 2007, BMC Bioinformatics.

[38]  Deborah L. McGuinness,et al.  Enabling Scientific Research using an Interdisciplinary Virtual Observatory: The Virtual Solar-Terrestrial Observatory Example , 2008, AI Mag..

[39]  David Poole,et al.  Semantic Science and Machine-Accessible Scientific Theories , 2008, AAAI Spring Symposium: Semantic Scientific Knowledge Integration.