EvoD/Vo: the origins of BMP signalling in the neuroectoderm

[1]  N. Barkai,et al.  Scaling of the BMP activation gradient in Xenopus embryos , 2008, Nature.

[2]  C. Lowe Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  D. Arendt,et al.  The evolution of nervous system centralization , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[5]  E. D. De Robertis,et al.  Evo-Devo: Variations on Ancestral Themes , 2008, Cell.

[6]  Bernhard Schmierer,et al.  TGFβ–SMAD signal transduction: molecular specificity and functional flexibility , 2007, Nature Reviews Molecular Cell Biology.

[7]  Markus Affolter,et al.  The Decapentaplegic morphogen gradient: from pattern formation to growth regulation , 2007, Nature Reviews Genetics.

[8]  Li Qian,et al.  Genetic control of heart function and aging in Drosophila. , 2007, Trends in cardiovascular medicine.

[9]  D. Arendt,et al.  Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria , 2007, Cell.

[10]  S. Roth,et al.  Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect , 2006, Proceedings of the National Academy of Sciences.

[11]  Ethan Bier,et al.  Threshold-Dependent BMP-Mediated Repression: A Model for a Conserved Mechanism That Patterns the Neuroectoderm , 2006, PLoS biology.

[12]  E. Lander,et al.  Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution , 2006, PLoS biology.

[13]  T. Holstein,et al.  Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. , 2006, Developmental biology.

[14]  H. Oda,et al.  Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning , 2006, Development.

[15]  E. D. Robertis,et al.  Spemann's organizer and self-regulation in amphibian embryos , 2006, Nature Reviews Molecular Cell Biology.

[16]  David M. Umulis,et al.  Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing , 2005, Development.

[17]  V. Schmid,et al.  BMP2/4 and BMP5-8 in jellyfish development and transdifferentiation. , 2006, The International journal of developmental biology.

[18]  Joseph C. Pearson,et al.  Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.

[19]  Qing Nie,et al.  Formation of the BMP activity gradient in the Drosophila embryo. , 2005, Developmental cell.

[20]  Osamu Shimmi,et al.  Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo , 2005, Cell.

[21]  M. Levine,et al.  Localized repressors delineate the neurogenic ectoderm in the early Drosophila embryo. , 2005, Developmental biology.

[22]  Yu-Chiun Wang,et al.  Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning , 2005, Nature.

[23]  Ethan Bier,et al.  Drosophila, the golden bug, emerges as a tool for human genetics , 2005, Nature Reviews Genetics.

[24]  G. Campbell,et al.  Repression of Dpp targets in the Drosophila wing by Brinker , 2004, Development.

[25]  E. D. De Robertis,et al.  Dorsal-ventral patterning and neural induction in Xenopus embryos. , 2004, Annual review of cell and developmental biology.

[26]  William McGinnis,et al.  Multiplex Detection of RNA Expression in Drosophila Embryos , 2004, Science.

[27]  Markus Affolter,et al.  A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. , 2004, Developmental cell.

[28]  M. Matise,et al.  Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord , 2004, Development.

[29]  J. Finnerty,et al.  Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea Anemone , 2004, Science.

[30]  Peter W. Markstein,et al.  A regulatory code for neurogenic gene expression in the Drosophila embryo , 2004, Development.

[31]  B. Biehs,et al.  Cysteine Repeat Domains and Adjacent Sequences Determine Distinct Bone Morphogenetic Protein Modulatory Activities of the Drosophila Sog Protein , 2004, Genetics.

[32]  Detlev Arendt,et al.  Metazoan Evolution: Some Animals Are More Equal than Others , 2004, Current Biology.

[33]  James W. Valentine,et al.  On the Origin of Phyla , 2004 .

[34]  A. Joyner,et al.  All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. , 2004, Developmental cell.

[35]  Manuel J. Aybar,et al.  Regulation of Msx genes by a Bmp gradient is essential for neural crest specification , 2003, Development.

[36]  Simon Conway-Morris,et al.  The Cambrian "explosion" of metazoans and molecular biology: would Darwin be satisfied? , 2003, The International journal of developmental biology.

[37]  Mingfa Li,et al.  Stepwise formation of a SMAD activity gradient during dorsal-ventral patterning of the Drosophila embryo , 2003, Development.

[38]  M. Levine,et al.  Ventral dominance governs sequential patterns of gene expression across the dorsal-ventral axis of the neuroectoderm in the Drosophila embryo. , 2003, Developmental biology.

[39]  V. Palma,et al.  The emergent design of the neural tube: prepattern, SHH morphogen and GLI code. , 2003, Current opinion in genetics & development.

[40]  Shawn C. Little,et al.  The pro-BMP activity of Twisted gastrulation is independent of BMP binding , 2003, Development.

[41]  N. Holland,et al.  Early central nervous system evolution: an era of skin brains? , 2003, Nature Reviews Neuroscience.

[42]  J. Briscoe,et al.  Gli proteins and the control of spinal‐cord patterning , 2003, EMBO reports.

[43]  J. Modolell,et al.  Half a century of neural prepatterning: the story of a few bristles and many genes , 2003, Nature Reviews Neuroscience.

[44]  Markus Affolter,et al.  Conversion of an Extracellular Dpp/BMP Morphogen Gradient into an Inverse Transcriptional Gradient , 2003, Cell.

[45]  Michael Levine,et al.  Whole-Genome Analysis of Dorsal-Ventral Patterning in the Drosophila Embryo , 2002, Cell.

[46]  Jens Böse,et al.  Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. , 2002, Genes & development.

[47]  A. McMahon,et al.  A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. , 2002, Genes & development.

[48]  M. Levine,et al.  Whole-genome expression profiles identify gene batteries in Drosophila. , 2002, Developmental cell.

[49]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[50]  W. McGinnis,et al.  Hox Genes: It's All a Matter of Context , 2002, Current Biology.

[51]  Evolutionary biology: Hedgehog crosses the snail's midline , 2002, Nature.

[52]  D. Hayward,et al.  Localized expression of a dpp/BMP2/4 ortholog in a coral embryo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Charlotte I. Wang,et al.  BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. , 2002, Development.

[54]  E. Bier,et al.  Creation of a Sog morphogen gradient in the Drosophila embryo. , 2002, Developmental cell.

[55]  V. Hartenstein,et al.  Dpp and Hh signaling in the Drosophila embryonic eye field. , 2001, Development.

[56]  E. D. De Robertis,et al.  Proteolytic cleavage of Chordin as a switch for the dual activities of Twisted gastrulation in BMP signaling. , 2001, Development.

[57]  N. Papalopulu,et al.  Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation. , 2001, Developmental biology.

[58]  R. Saint,et al.  Conservation of a DPP/BMP signaling pathway in the nonbilateral cnidarian Acropora millepora , 2001, Evolution & development.

[59]  Kirby D. Johnson,et al.  Repression of Dpp Targets by Binding of Brinker to Mad Sites* , 2001, The Journal of Biological Chemistry.

[60]  A. Brivanlou,et al.  Twisted gastrulation can function as a BMP antagonist , 2001, Nature.

[61]  Ken W. Y. Cho,et al.  Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling , 2001, Nature.

[62]  Stephen C. Ekker,et al.  Twisted gastrulation is a conserved extracellular BMP antagonist , 2001, Nature.

[63]  D. C. Weinstein,et al.  Is Chordin a morphogen? , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[64]  C. Rushlow,et al.  Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. , 2001, Genes & development.

[65]  T. Jessell,et al.  Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. , 2000, Development.

[66]  C. Chiang,et al.  Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3 , 2000, Nature Neuroscience.

[67]  C. Doe,et al.  Convergence of dorsal, dpp, and egfr signaling pathways subdivides the drosophila neuroectoderm into three dorsal-ventral columns. , 2000, Developmental biology.

[68]  O. Shimmi,et al.  Is chordin a long-range- or short-range-acting factor? Roles for BMP1-related metalloproteases in chordin and BMP4 autofeedback loop regulation. , 2000, Developmental biology.

[69]  E. Robertis,et al.  The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling , 2000, Nature.

[70]  O. Shimmi,et al.  Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. , 2000, Development.

[71]  T. Jessell,et al.  A Homeodomain Protein Code Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural Tube , 2000, Cell.

[72]  E. Weinberg,et al.  Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. , 2000, Development.

[73]  R. Cornell,et al.  Vnd/nkx, ind/gsh, and msh/msx: conserved regulators of dorsoventral neural patterning? , 2000, Current Opinion in Neurobiology.

[74]  S. Wilson,et al.  Bmp activity establishes a gradient of positional information throughout the entire neural plate. , 1999, Development.

[75]  S. Roth,et al.  The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. , 1999, Development.

[76]  T. Jessell,et al.  A Sonic Hedgehog–Independent, Retinoid-Activated Pathway of Neurogenesis in the Ventral Spinal Cord , 1999, Cell.

[77]  Michael Levine,et al.  Local inhibition and long-range enhancement of Dpp signal transduction by Sog , 1999, Nature.

[78]  J. Rubenstein,et al.  Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  T. Jessell,et al.  The specification of dorsal cell fates in the vertebrate central nervous system. , 1999, Annual review of neuroscience.

[80]  S. Morris Early Metazoan Evolution: Reconciling Paleontology and Molecular Biology' , 1998 .

[81]  F. Jiménez,et al.  Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. , 1998, Genes & development.

[82]  C. Doe,et al.  Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. , 1998, Genes & development.

[83]  C Q Doe,et al.  Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. , 1998, Genes & development.

[84]  M. Bronner‐Fraser,et al.  Neural crest induction in Xenopus: evidence for a two-signal model. , 1998, Development.

[85]  R. Mayor,et al.  The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. , 1998, Developmental biology.

[86]  A. McMahon,et al.  Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. , 1998, Genes & development.

[87]  Leslie Dale,et al.  Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity , 1997, Cell.

[88]  Ken W. Y. Cho,et al.  Production of a DPP Activity Gradient in the Early Drosophila Embryo through the Opposing Actions of the SOG and TLD Proteins , 1997, Cell.

[89]  H. Bellen,et al.  Genetic dissection of synaptic transmission in Drosophila , 1997, Current Opinion in Neurobiology.

[90]  A. Nose,et al.  The role of the msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm. , 1997, Development.

[91]  A. Suzuki,et al.  Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. , 1997, Development.

[92]  B. Hogan,et al.  Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. , 1997, Development.

[93]  E. Bier Anti-Neural-Inhibition: A Conserved Mechanism for Neural Induction , 1997, Cell.

[94]  R. Patient,et al.  A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish , 1997, Mechanisms of Development.

[95]  B. Biehs,et al.  The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. , 1996, Genes & development.

[96]  A. McMahon,et al.  Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. , 1996, Genes & development.

[97]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[98]  E. L. Ferguson Conservation of dorsal-ventral patterning in arthropods and chordates. , 1996, Current opinion in genetics & development.

[99]  G. von Dassow,et al.  Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. , 1996, Development.

[100]  Y. Sasai,et al.  A common plan for dorsoventral patterning in Bilateria , 1996, Nature.

[101]  D. Kimelman,et al.  Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning. , 1995, Development.

[102]  A. Laughon,et al.  A Drosophila protein related to the human zinc finger transcription factor PRDII/MBPI/HIV-EP1 is required for dpp signaling. , 1995, Development.

[103]  Yoshiki Sasai,et al.  A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin , 1995, Nature.

[104]  R. Harland,et al.  A nodal-related gene defines a physical and functional domain within the Spemann organizer , 1995, Cell.

[105]  L. Velasco,et al.  vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. , 1995, The EMBO journal.

[106]  M. Affolter,et al.  schnurri is required for drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1 , 1995, Cell.

[107]  M. O’Connor,et al.  The drosophila schnurri gene acts in the Dpp/TGFβ signaling pathway and encodes a transcription factor homologous to the human MBP family , 1995, Cell.

[108]  N. Ueno,et al.  Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. , 1995, Developmental biology.

[109]  W. Gelbart,et al.  Drosophila Dpp signaling is mediated by the punt gene product: A dual ligand-binding type II receptor of the TGFβ receptor family , 1995, Cell.

[110]  J. Sekelsky,et al.  Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. , 1995, Genetics.

[111]  E. Bier,et al.  Xenopus chordin and Drosophila short gastrulation genes encode homologous proteins functioning in dorsal-ventral axis formation , 1995, Cell.

[112]  W. Gelbart,et al.  Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. , 1995, Genetics.

[113]  Y. Sasai,et al.  Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes , 1994, Cell.

[114]  M. Levine,et al.  The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. , 1994, Genes & development.

[115]  J. Emery,et al.  Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. , 1994, Genes & development.

[116]  D. Arendt,et al.  Inversion of dorsoventral axis? , 1994, Nature.

[117]  W. Gelbart,et al.  Characterization and relationship of dpp receptors encoded by the saxophone and thick veins genes in Drosophila , 1994, Cell.

[118]  J. Massagué,et al.  Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor , 1994, Cell.

[119]  J. Marsh,et al.  Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. , 1994, Genes & development.

[120]  S. Carroll,et al.  The ventral nervous system defective gene controls proneural gene expression at two distinct steps during neuroblast formation in Drosophila. , 1994, Development.

[121]  R. Harland,et al.  Neural induction by the secreted polypeptide noggin. , 1993, Science.

[122]  M. Ashburner,et al.  An attempt to hybridize Drosophila species using pole cell transplantation. , 1993, Genetics.

[123]  M. O’Connor,et al.  The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1 , 1991, Cell.

[124]  W. Gelbart,et al.  Drosophila 60A gene, another transforming growth factor beta family member, is closely related to human bone morphogenetic proteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[125]  W. Gelbart,et al.  A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-β family , 1987, Nature.