Spectral sampling of manifolds

A central problem in computer graphics is finding optimal sampling conditions for a given surface representation. We propose a new method to solve this problem based on spectral analysis of manifolds which results in faithful reconstructions and high quality isotropic samplings, is efficient, out-of-core, feature sensitive, intuitive to control and simple to implement. We approach the problem in a novel way by utilizing results from spectral analysis, kernel methods, and matrix perturbation theory. Change in a manifold due to a single point is quantified by a local measure that limits the change in the Laplace-Beltrami spectrum of the manifold. Hence, we do not need to explicitly compute the spectrum or any global quantity, which makes our algorithms very efficient. Although our main focus is on sampling surfaces, the analysis and algorithms are general and can be applied for simplifying and resampling point clouds lying near a manifold of arbitrary dimension.

[1]  A. Grigor’yan Spectral Theory and Geometry: Estimates of heat kernels on Riemannian manifolds , 1999 .

[2]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[3]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[4]  Meenakshisundaram Gopi,et al.  Eurographics Symposium on Point-based Graphics (2006) Efficient and Prioritized Point Subsampling for Csrbf Compression , 2022 .

[5]  Hao Zhang,et al.  Sub-sampling for Efficient Spectral Mesh Processing , 2006, Computer Graphics International.

[6]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[7]  Cláudio T. Silva,et al.  Direct (Re)Meshing for Efficient Surface Processing , 2006, Comput. Graph. Forum.

[8]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[9]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[10]  S. Kesavan Listening to the shape of a drum , 1998 .

[11]  Marc Alexa,et al.  Spectral sampling of manifolds , 2010, ACM Trans. Graph..

[12]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[13]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[14]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[15]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[16]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[17]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[18]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[19]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[20]  E. Grinspun,et al.  Discrete laplace operators: no free lunch , 2007 .

[21]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[22]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[24]  Markus H. Gross,et al.  Feature Preserving Point Set Surfaces based on Non‐Linear Kernel Regression , 2009, Comput. Graph. Forum.

[25]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[26]  B. Moghaddam,et al.  Sparse regression as a sparse eigenvalue problem , 2008, 2008 Information Theory and Applications Workshop.

[27]  Hao Zhang,et al.  Spectral Methods for Mesh Processing and Analysis , 2007, Eurographics.

[28]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[29]  M. Gross,et al.  Algebraic point set surfaces , 2007, SIGGRAPH 2007.

[30]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH Courses.

[31]  Yan Fu,et al.  Direct sampling on surfaces for high quality remeshing , 2008, SPM '08.

[32]  Tamal K. Dey,et al.  Convergence, stability, and discrete approximation of Laplace spectra , 2010, SODA '10.

[33]  Shi-Min Hu,et al.  Robust Feature Classification and Editing , 2007, IEEE Transactions on Visualization and Computer Graphics.

[34]  S. Kesavan,et al.  Listening to the shape of a drum , 1998 .

[35]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[36]  Robert Ulichney,et al.  Digital Halftoning , 1987 .

[37]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[38]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[39]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[40]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[41]  Tamal K. Dey,et al.  Tight cocone: a water-tight surface reconstructor , 2003, SM '03.