A Study of Underwater Terrain Navigation based on the Robust Matching Method

Outliers in terrain data are an obstacle to achieving accurate and robust solutions of Underwater Terrain Relative Navigation (UTRN). If not handled properly, navigation may be degraded or even divergent. To address the problem, this paper proposes a terrain-matching algorithm based on the robust estimation theory. In contrast to the conventional approach, the proposed algorithm can significantly reduce the interference of the outliers. Experimental results confirm the good performance of the proposed method.

[1]  Joe P. Golden,et al.  Terrain Contour Matching (TERCOM): A Cruise Missile Guidance Aid , 1980, Optics & Photonics.

[2]  I. Nygren,et al.  Terrain navigation for underwater vehicles using the correlator method , 2004, IEEE Journal of Oceanic Engineering.

[3]  Lamine Mili,et al.  Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator , 2010, IEEE Transactions on Signal Processing.

[4]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[5]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[6]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  R. McEwen,et al.  Low-cost terrain relative navigation for long-range AUVs , 2008, OCEANS 2008.

[8]  Lei Yan,et al.  Offline outlier identification for dynamic measurements in underwater geomagnetism navigation , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[9]  Fredrik Gustafsson,et al.  Terrain navigation using Bayesian statistics , 1999 .

[10]  David S. Wettergreen,et al.  Active localization on the ocean floor with multibeam sonar , 2008, OCEANS 2008.

[11]  G. T. Donovan,et al.  Position Error Correction for an Autonomous Underwater Vehicle Inertial Navigation System (INS) Using a Particle Filter , 2012, IEEE Journal of Oceanic Engineering.

[12]  Stephen M. Rock,et al.  Closed-loop terrain relative navigation for AUVs with non-inertial grade navigation sensors , 2010, 2010 IEEE/OES Autonomous Underwater Vehicles.

[13]  V. Yohai,et al.  A class of robust and fully efficient regression estimators , 2002 .

[14]  F. Gustafsson,et al.  Bayesian Surface and Underwater Navigation , 2006, IEEE Transactions on Signal Processing.

[15]  L. B. Hostetler,et al.  Nonlinear Kalman filtering techniques for terrain-aided navigation , 1983 .

[16]  Paul D. Groves,et al.  Terrain-Referenced Navigation Using the IGMAP Data Fusion Algorithm , 2005 .

[17]  K. B. Ånonsen Advances in Terrain Aided Navigation for Underwater Vehicles , 2010 .

[18]  Fredrik Gustafsson,et al.  Particle filter for underwater terrain navigation , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[19]  F Gustafsson,et al.  Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.

[20]  O. Hallingstad,et al.  Terrain Aided Underwater Navigation Using Point Mass and Particle Filters , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.