Fourier analysis of a robust multigrid method for convection-diffusion equations

We consider a two-grid method for solving 2D convection-diffusion problems. The coarse grid correction is based on approximation of the Schur complement. As a preconditioner of the Schur complement we use the exact Schur complement of modified fine grid equations. We assume constant coefficients and periodic boundary conditions and apply Fourier analysis. We prove an upper bound for the spectral radius of the two-grid iteration matrix that is smaller than one and independent of the mesh size, the convection/diffusion ratio and the flow direction; i.e. we have a (strong) robustness result. Numerical results illustrating the robustness of the corresponding multigrid W-cycle are given.