Progress in cochlear physiology after Békésy

[1]  E G Wever,et al.  ACTION CURRENTS IN THE AUDITORY NERVE IN RESPONSE TO ACOUSTICAL STIMULATION. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Audition; a physiological survey. , 1949, Science.

[3]  A. Gesell The developmental aspect of child vision. , 1949, Jornal de Pediatria.

[4]  H. Davis,et al.  The Space‐Time Pattern of the Cochlear Microphonics (Guinea Pig), as Recorded by Differential Electrodes , 1952 .

[5]  O. H. Lowry,et al.  The electrolytes of the labyrinthine fluids , 1954, The Laryngoscope.

[6]  H. Davis Transmission and transduction in the cochlea , 1958 .

[7]  G. Békésy,et al.  Experiments in Hearing , 1963 .

[8]  A. Flock,et al.  Transducing mechanisms in the lateral line canal organ receptors. , 1965, Cold Spring Harbor symposia on quantitative biology.

[9]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[10]  Harold F. Schuknecht,et al.  Pathology of the Ear , 1974 .

[11]  P M Sellick,et al.  Intracellular studies of hair cells in the mammalian cochlea. , 1978, The Journal of physiology.

[12]  P. Hamrick,et al.  Ion transport in the cochlea of guinea pig. II. Chloride transport. , 1978, Acta oto-laryngologica.

[13]  P. Hamrick,et al.  Ion transport in guinea pig cochlea. I. Potassium and sodium transport. , 1978, Acta oto-laryngologica.

[14]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[15]  P Dallos,et al.  Properties of auditory nerve responses in absence of outer hair cells. , 1978, Journal of neurophysiology.

[16]  D. Mountain,et al.  Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. , 1980, Science.

[17]  D. O. Kim,et al.  Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity , 1982, Hearing Research.

[18]  P Dallos,et al.  Intracellular recordings from cochlear outer hair cells. , 1982, Science.

[19]  J. Guinan,et al.  Differential olivocochlear projections from lateral versus medial zones of the superior olivary complex , 1983, The Journal of comparative neurology.

[20]  Craig C. Bader,et al.  Evoked mechanical responses of isolated cochlear outer hair cells. , 1985, Science.

[21]  H. P. Zenner,et al.  Reversible contraction of isolated mammalian cochlear hair cells , 1985, Hearing Research.

[22]  J. Tonndorf Georg von Békésy and his work , 1986, Hearing Research.

[23]  I. J. Russell,et al.  The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro , 1986, Hearing Research.

[24]  J. Ashmore A fast motile response in guinea‐pig outer hair cells: the cellular basis of the cochlear amplifier. , 1987, The Journal of physiology.

[25]  Raimond L Winslow,et al.  Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle , 1988, Hearing Research.

[26]  G. K. Yates,et al.  The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig , 1989, Hearing Research.

[27]  W. T. Peake,et al.  Experiments in Hearing , 1963 .

[28]  W. Brownell,et al.  Fine structure of the intracochlear potential field. I. The silent current. , 1990, Biophysical journal.

[29]  M. Kössl,et al.  The voltage responses of hair cells in the basal turn of the guinea‐pig cochlea. , 1991, The Journal of physiology.

[30]  J. Santos-Sacchi,et al.  Reversible inhibition of voltage-dependent outer hair cell motility and capacitance , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  K. Iwasa,et al.  A membrane-based force generation mechanism in auditory sensory cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T Kawase,et al.  Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. , 1993, Journal of neurophysiology.

[33]  P Dallos,et al.  Stereocilia displacement induced somatic motility of cochlear outer hair cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  E Lehnhardt,et al.  [Intracochlear placement of cochlear implant electrodes in soft surgery technique]. , 1993, HNO.

[35]  A. Hubbard,et al.  A traveling-wave amplifier model of the cochlea. , 1993, Science.

[36]  William S. Rhode,et al.  Nonlinear mechanics at the apex of the guinea-pig cochlea , 1995, Hearing Research.

[37]  P. Wangemann Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells , 1995, Hearing Research.

[38]  J. Guinan Physiology of Olivocochlear Efferents , 1996 .

[39]  R. A. Schmiedt,et al.  Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis , 1996, Hearing Research.

[40]  Peter Dallos,et al.  Acetylcholine, Outer Hair Cell Electromotility, and the Cochlear Amplifier , 1997, The Journal of Neuroscience.

[41]  John C. Eccles (1903-1997) , 1997, Science.

[42]  I. Russell,et al.  Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. , 1997, The Journal of the Acoustical Society of America.

[43]  W Hemmert,et al.  Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Guinan,et al.  Medial efferent effects on auditory-nerve responses to tail-frequency tones. I. Rate reduction. , 1999, The Journal of the Acoustical Society of America.

[45]  Jing Zheng,et al.  Prestin is the motor protein of cochlear outer hair cells , 2000, Nature.

[46]  A J Hudspeth,et al.  Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. de Boer,et al.  The mechanical waveform of the basilar membrane. II. From data to models--and back. , 2000, The Journal of the Acoustical Society of America.

[48]  D P Corey,et al.  Two mechanisms for transducer adaptation in vertebrate hair cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P Dallos,et al.  Intracellular Anions as the Voltage Sensor of Prestin, the Outer Hair Cell Motor Protein , 2001, Science.

[50]  L. Robles,et al.  Mechanics of the mammalian cochlea. , 2001, Physiological reviews.

[51]  S. Heinemann,et al.  α10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  G. Manley,et al.  Evidence for an active process and a cochlear amplifier in nonmammals. , 2001, Journal of neurophysiology.

[53]  K. Iwasa A two-state piezoelectric model for outer hair cell motility. , 2001, Biophysical journal.

[54]  P. Fuchs,et al.  The Synaptic Physiology of Cochlear Hair Cells , 2002, Audiology and Neurotology.

[55]  M. Charles Liberman,et al.  Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier , 2002, Nature.

[56]  Christopher A Shera,et al.  Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. , 2003, The Journal of the Acoustical Society of America.

[57]  M. Liberman,et al.  Lateral Wall Histopathology and Endocochlear Potential in the Noise-Damaged Mouse Cochlea , 2003, Journal of the Association for Research in Otolaryngology.

[58]  J. Guinan,et al.  Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity , 2003, The Journal of physiology.

[59]  A J Hudspeth,et al.  Spontaneous Oscillation by Hair Bundles of the Bullfrog's Sacculus , 2003, The Journal of Neuroscience.

[60]  M. G. Evans,et al.  Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells , 2003, Nature Neuroscience.

[61]  K. Kawamoto,et al.  Math1 Gene Transfer Generates New Cochlear Hair Cells in Mature Guinea Pigs In Vivo , 2003, The Journal of Neuroscience.

[62]  M. Cheatham,et al.  Cochlear function in Prestin knockout mice , 2004, The Journal of physiology.

[63]  Bruce J Gantz,et al.  Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant , 2004, Acta oto-laryngologica.

[64]  Tianying Ren,et al.  Reverse propagation of sound in the gerbil cochlea , 2004, Nature Neuroscience.

[65]  Alberto Recio-Spinoso,et al.  Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. , 2005, The Journal of the Acoustical Society of America.

[66]  A J Hudspeth,et al.  Ca2+ current–driven nonlinear amplification by the mammalian cochlea in vitro , 2005, Nature Neuroscience.

[67]  R. Fettiplace,et al.  Force generation by mammalian hair bundles supports a role in cochlear amplification , 2005, Nature.

[68]  John J Guinan,et al.  Medial-olivocochlear-efferent inhibition of the first peak of auditory-nerve responses: evidence for a new motion within the cochlea. , 2005, The Journal of the Acoustical Society of America.

[69]  Nigel P. Cooper,et al.  Efferent‐mediated control of basilar membrane motion , 2006, The Journal of physiology.

[70]  J. Guinan Olivocochlear Efferents: Anatomy, Physiology, Function, and the Measurement of Efferent Effects in Humans , 2006, Ear and hearing.

[71]  Rahul Sarpeshkar,et al.  Fast cochlear amplification with slow outer hair cells , 2006, Hearing Research.

[72]  Joseph Santos-Sacchi,et al.  Control of Mammalian Cochlear Amplification by Chloride Anions , 2006, The Journal of Neuroscience.

[73]  Anthony W. Gummer,et al.  Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Ian J. Russell,et al.  SHARPENED COCHLEAR TUNING IN A MOUSE WITH A GENETICALLY MODIFIED TECTORIAL MEMBRANE , 2007, Nature Neuroscience.

[75]  Christopher A Shera,et al.  Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea. , 2007, The Journal of the Acoustical Society of America.

[76]  E. de Boer,et al.  Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions. , 2007, The Journal of the Acoustical Society of America.

[77]  J. Ashmore Cochlear outer hair cell motility. , 2008, Physiological reviews.

[78]  P. Sellick,et al.  A method for introducing non-silencing siRNA into the guinea pig cochlea in vivo , 2008, Journal of Neuroscience Methods.

[79]  Peter Dallos,et al.  Prestin-Based Outer Hair Cell Motility Is Necessary for Mammalian Cochlear Amplification , 2008, Neuron.

[80]  E. Olson,et al.  Supporting evidence for reverse cochlear traveling waves. , 2008, The Journal of the Acoustical Society of America.

[81]  William E. Brownell,et al.  Power Efficiency of Outer Hair Cell Somatic Electromotility , 2009, PLoS Comput. Biol..

[82]  U. Müller,et al.  Mechanotransduction by Hair Cells: Models, Molecules, and Mechanisms , 2009, Cell.

[83]  H. Wada,et al.  Atomic force microscopy in studies of the cochlea. , 2009, Methods in molecular biology.

[84]  M. Cheatham,et al.  A Chimera Analysis of Prestin Knock-Out Mice , 2009, The Journal of Neuroscience.

[85]  M. van der Heijden,et al.  Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves. , 2010, Journal of neurophysiology.

[86]  P. Avan,et al.  The remarkable cochlear amplifier , 2010, Hearing Research.

[87]  Roozbeh Ghaffari,et al.  Tectorial membrane travelling waves underlie abnormal hearing in Tectb mutant mice , 2010, Nature communications.

[88]  Karl Grosh,et al.  The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. , 2010, The Journal of the Acoustical Society of America.

[89]  Robert Fettiplace,et al.  Prestin-Driven Cochlear Amplification Is Not Limited by the Outer Hair Cell Membrane Time Constant , 2011, Neuron.

[90]  A. Fridberger,et al.  The endocochlear potential alters cochlear micromechanics. , 2011, Biophysical journal.

[91]  Mechanical Excitation of IHC Stereocilia: An Attempt to Fit Together Diverse Evidence , 2011 .

[92]  Efferent Insights into Cochlear Mechanics , 2011 .

[93]  Hendrikus Duifhuis Hopf‐Bifurcations and Van der Pol Oscillator Models of the Mammalian Cochlea , 2011 .

[94]  Steven L. Jacques,et al.  A differentially amplified motion in the ear for near-threshold sound detection , 2011, Nature Neuroscience.

[95]  M. Liberman,et al.  Primary Neural Degeneration in the Guinea Pig Cochlea After Reversible Noise-Induced Threshold Shift , 2011, Journal of the Association for Research in Otolaryngology.

[96]  Elizabeth S. Olson,et al.  Von Békésy and cochlear mechanics , 2012, Hearing Research.