Coupled magnetic and structural transition in topological antiferromagnet EuAgAs under high pressure

[1]  C. Felser,et al.  Interplay between Magnetism and Topology: Large Topological Hall Effect in an Antiferromagnetic Topological Insulator, EuCuAs , 2023, Journal of the American Chemical Society.

[2]  D. Graf,et al.  Evidence of magnetic fluctuation induced Weyl semimetal state in the antiferromagnetic topological insulator Mn(Bi1, 2023, Physical Review B.

[3]  L. Chaput,et al.  Implementation strategies in phonopy and phono3py , 2023, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  Weijun Ren,et al.  Incommensurate spin density wave and magnetocaloric effect in the metallic triangular lattice HoAl2Ge2, 2022, Physical Review B.

[5]  D. Kaczorowski,et al.  Electronic structure and physical properties of EuAuAs single crystal , 2022, 2208.10405.

[6]  T. Zhai,et al.  2D Magnetic Heterostructures and Emergent Spintronic Devices , 2022, Advanced Electronic Materials.

[7]  C. Felser,et al.  Progress and prospects in magnetic topological materials , 2022, Nature.

[8]  Y. Tokura,et al.  Topological spintronics and magnetoelectronics , 2021, Nature Materials.

[9]  Hangdong Wang,et al.  Shubnikov–de Haas oscillations and electronic structure in the Dirac semimetal SrAgAs , 2021, Physical Review B.

[10]  Zhi-Ming Yu,et al.  Multiple magnetism-controlled topological states in EuAgAs , 2021, Physical Review B.

[11]  A. Agarwal,et al.  Topological Hall effect in the antiferromagnetic Dirac semimetal EuAgAs , 2021, Physical Review B.

[12]  R. Wu,et al.  Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2 , 2021, Science China Physics, Mechanics & Astronomy.

[13]  Y. Uwatoko,et al.  Pressure-induced multicriticality and electronic instability in the quasi-kagome ferromagnet URhSn , 2021, Physical Review B.

[14]  Zaiyao Fei,et al.  Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBi2Te4. , 2020, Nano letters.

[15]  Y. Ōnuki,et al.  Unique Electronic States of Eu-based Compounds , 2020 .

[16]  S. Kawasaki,et al.  Localized-to-itinerant transition preceding antiferromagnetic quantum critical point and gapless superconductivity in CeRh0.5Ir0.5In5 , 2020, Communications Physics.

[17]  Y. Uwatoko,et al.  Quantum Criticality of Valence Transition for the Unique Electronic State of Antiferromagnetic Compound EuCu2Ge2 , 2020, 2005.03828.

[18]  Ying Zhou,et al.  Pressure-driven Lifshitz transition in type-II Dirac semimetal NiTe2 , 2020 .

[19]  M. Nicklas,et al.  Strange-metal behaviour in a pure ferromagnetic Kondo lattice , 2019, Nature.

[20]  S. Matsuda,et al.  Anomalous ferromagnetic ordering in EuCuP , 2019, Journal of Alloys and Compounds.

[21]  Claudia Felser,et al.  Zero‐Field Nernst Effect in a Ferromagnetic Kagome‐Lattice Weyl‐Semimetal Co3Sn2S2 , 2019, Advanced materials.

[22]  Y. Yu,et al.  Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 , 2019, Science.

[23]  C. Felser,et al.  Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2 , 2019, Science.

[24]  L. Ling,et al.  Pressure-induced irreversible evolution of superconductivity in PdBi2 , 2019, Physical Review B.

[25]  Yoshinori Tokura,et al.  Magnetic topological insulators , 2019, Nature Reviews Physics.

[26]  X. Lü,et al.  Pressure-induced Lifshitz transition in the type II Dirac semimetal PtTe2 , 2018, Science China Physics, Mechanics & Astronomy.

[27]  C. Felser,et al.  Magnetoresistance and anomalous Hall effect in micro-ribbons of the magnetic Weyl semimetal Co3Sn2S2 , 2018, Applied Physics Letters.

[28]  A. Arnau,et al.  Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi_{2}Te_{4} Films. , 2018, Physical review letters.

[29]  V. N. Zverev,et al.  Prediction and observation of an antiferromagnetic topological insulator , 2018, Nature.

[30]  Bing-Lin Gu,et al.  Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials , 2018, Science Advances.

[31]  Haijun Zhang,et al.  Topological Axion States in the Magnetic Insulator MnBi_{2}Te_{4} with the Quantized Magnetoelectric Effect. , 2018, Physical review letters.

[32]  R. Sankar,et al.  Kondo behavior and metamagnetic phase transition in the heavy-fermion compound CeBi2 , 2018, 1802.05060.

[33]  H. Weng,et al.  Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions , 2017, Nature Communications.

[34]  Benedikt Ernst,et al.  A three-dimensional magnetic topological phase , 2017, 1712.09992.

[35]  K. Ho,et al.  Ferromagnetic Quantum Critical Point Avoided by the Appearance of Another Magnetic Phase in LaCrGe_{3} under Pressure. , 2016, Physical review letters.

[36]  D. Aoki,et al.  Pressure-Induced Valence Transition and Characteristic Electronic States in EuRh2Si2 , 2016 .

[37]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[38]  D. Braithwaite,et al.  Quantum Criticality of an Itinerant Ferromagnetic Compound URhAl Studied by Resistivity Measurements under High Pressure , 2015 .

[39]  H. Zeng,et al.  Magnetic properties of EuCuAs single crystal , 2014 .

[40]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[41]  M. Nicklas,et al.  Ferromagnetic Quantum Critical Point in the Heavy-Fermion Metal YbNi4(P1−xAsx)2 , 2013, Science.

[42]  N. Sato,et al.  Non-Fermi Liquid State Bounded by a Possible Electronic Topological Transition in ZrZn2 , 2012 .

[43]  D. Kaczorowski,et al.  Magnetic ordering and Kondo behavior in single-crystalline Ce 2 NiSi 3 , 2012 .

[44]  V. Kucek,et al.  Structural and vibrational study of Bi 2 Se 3 under high pressure , 2011 .

[45]  S. Hayden,et al.  Transport and thermodynamic evidence for a marginal Fermi-liquid state in ZrZn 2 , 2011, 1110.5240.

[46]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[47]  H. Takagi,et al.  Marginal breakdown of the Fermi-liquid state on the border of metallic ferromagnetism , 2008, Nature.

[48]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[49]  P. Canfield,et al.  Electronic properties of CeIn3 under high pressure near the quantum critical point , 2001 .

[50]  E. Baggio-Saitovitch,et al.  Electron-magnon interaction in RNiBC (R=Er, Ho, Dy, Tb, and Gd) series of compounds based on magnetoresistance measurements , 1999 .

[51]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[52]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[53]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[54]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[55]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[56]  Hans‐Uwe Schuster,et al.  Magnetische Eigenschaften der Verbindungsreihe EuBX mit B = Element der ersten Neben‐ und X = Element der fünften Hauptgruppe , 1984 .

[57]  Hans‐Uwe Schuster,et al.  ABX-Verbindungen mit modifizierter Ni2In-Struktur / ABX-Compounds with a Modified Ni2In Structure , 1981 .

[58]  T. Hioki,et al.  Spin fluctuations in itinerant electron ferromagnet Sc3In , 1977 .

[59]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .