Estimation of number and size of QTL effects in forest tree traits

[1]  Q. Du,et al.  Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa , 2014, DNA research : an international journal for rapid publication of reports on genes and genomes.

[2]  T. Würschum,et al.  Evaluation of multi-locus models for genome-wide association studies: a case study in sugar beet , 2014, Heredity.

[3]  Wendy Schackwitz,et al.  Nature Genetics Advance Online Publication Population Genomics of Populus Trichocarpa Identifies Signatures of Selection and Adaptive Trait Associations , 2022 .

[4]  G. Tuskan,et al.  Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. , 2014, The New phytologist.

[5]  F. Isik Genomic selection in forest tree breeding: the concept and an outlook to the future , 2014, New Forests.

[6]  L. Sánchez,et al.  Single versus subdivided population strategies in breeding against an adverse genetic correlation , 2014, Tree Genetics & Genomes.

[7]  Q. Du,et al.  Single-nucleotide polymorphisms in the 5′ UTR of UDP-glucose dehydrogenase (PtUGDH) associate with wood properties in Populus tomentosa , 2013, Tree Genetics & Genomes.

[8]  G. Tuskan,et al.  Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. , 2013, The New phytologist.

[9]  R. Vaillancourt,et al.  Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus. , 2013, The New phytologist.

[10]  Douglas G. Scofield,et al.  The Norway spruce genome sequence and conifer genome evolution , 2013, Nature.

[11]  Inanç Birol,et al.  Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data , 2013, Bioinform..

[12]  Brook T. Moyers,et al.  Genomic islands of divergence are not affected by geography of speciation in sunflowers , 2013, Nature Communications.

[13]  R. J. Dyer,et al.  Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate , 2013, Tree Genetics & Genomes.

[14]  Nourollah Ahmadi,et al.  Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations , 2013, Molecular ecology.

[15]  G. Bossinger,et al.  Dissection of complex traits in forest trees — opportunities for marker-assisted selection , 2013, Tree Genetics & Genomes.

[16]  Bjarni J. Vilhjálmsson,et al.  The nature of confounding in genome-wide association studies , 2012, Nature Reviews Genetics.

[17]  G. Coupland,et al.  The genetic basis of flowering responses to seasonal cues , 2012, Nature Reviews Genetics.

[18]  David J. Lee,et al.  Association genetics in Corymbia citriodora subsp. variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield. , 2012, The New phytologist.

[19]  Bjarni J. Vilhjálmsson,et al.  An efficient multi-locus mixed model approach for genome-wide association studies in structured populations , 2012, Nature Genetics.

[20]  T. A. Martin,et al.  Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.) , 2012, Genetics.

[21]  M. Rockman THE QTN PROGRAM AND THE ALLELES THAT MATTER FOR EVOLUTION: ALL THAT'S GOLD DOES NOT GLITTER , 2012, Evolution; international journal of organic evolution.

[22]  F. Gagnon,et al.  The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers , 2011, Heredity.

[23]  M. Stephens,et al.  Bayesian variable selection regression for genome-wide association studies and other large-scale problems , 2011, 1110.6019.

[24]  W. G. Hill,et al.  Genome partitioning of genetic variation for complex traits using common SNPs , 2011, Nature Genetics.

[25]  R. Mott,et al.  Genetic Architecture of Flowering-Time Variation in Arabidopsis thaliana , 2011, Genetics.

[26]  K. Ritland,et al.  QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments , 2011, BMC Genomics.

[27]  Pär K Ingvarsson,et al.  Association genetics of complex traits in plants. , 2011, The New phytologist.

[28]  D. Neale,et al.  Forest tree genomics: growing resources and applications , 2011, Nature Reviews Genetics.

[29]  Peter J. Bradbury,et al.  Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population , 2011, Nature Genetics.

[30]  Peter J. Bradbury,et al.  Genome-wide association study of leaf architecture in the maize nested association mapping population , 2011, Nature Genetics.

[31]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[32]  Rohan L. Fernando,et al.  Extension of the bayesian alphabet for genomic selection , 2011, BMC Bioinformatics.

[33]  S. Powers,et al.  Genetic mapping of rust resistance loci in biomass willow , 2011, Tree Genetics & Genomes.

[34]  P. Ingvarsson,et al.  Genetic Differentiation, Clinal Variation and Phenotypic Associations With Growth Cessation Across the Populus tremula Photoperiodic Pathway , 2010, Genetics.

[35]  Theo H. E. Meuwissen,et al.  Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers , 2010, BMC Bioinformatics.

[36]  G. Casella,et al.  Association Mapping of Quantitative Disease Resistance in a Natural Population of Loblolly Pine (Pinus taeda L.) , 2010, Genetics.

[37]  C. Chevalet,et al.  Detecting Selection in Population Trees: The Lewontin and Krakauer Test Extended , 2010, Genetics.

[38]  G. Coop,et al.  Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae) , 2010, Molecular ecology.

[39]  C. Bell,et al.  Allelic Variation in Cell Wall Candidate Genes Affecting Solid Wood Properties in Natural Populations and Land Races of Pinus radiata , 2010, Genetics.

[40]  Nilanjan Chatterjee,et al.  Estimation of effect size distribution from genome-wide association studies and implications for future discoveries , 2010, Nature Genetics.

[41]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[42]  M. Goddard,et al.  Accurate Prediction of Genetic Values for Complex Traits by Whole-Genome Resequencing , 2010, Genetics.

[43]  M. Henery,et al.  Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens , 2010, Tree Genetics & Genomes.

[44]  Peter J. Bradbury,et al.  The Genetic Architecture of Maize Flowering Time , 2009, Science.

[45]  David B Neale,et al.  Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits , 2009, Genetics.

[46]  P. Visscher,et al.  Increased accuracy of artificial selection by using the realized relationship matrix. , 2009, Genetics research.

[47]  R. Nelson,et al.  Shades of gray: the world of quantitative disease resistance. , 2009, Trends in plant science.

[48]  M. Goddard Genomic selection: prediction of accuracy and maximisation of long term response , 2009, Genetica.

[49]  John A Woolliams,et al.  A fast algorithm for BayesB type of prediction of genome-wide estimates of genetic value , 2009, Genetics Selection Evolution.

[50]  B. Maher Personal genomes: The case of the missing heritability , 2008, Nature.

[51]  L. Sánchez,et al.  Gametic models for multitrait selection schemes to study variance of response and drift under adverse genetic correlations , 2008, Tree Genetics & Genomes.

[52]  K. Ritland,et al.  Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families , 2008, Tree Genetics & Genomes.

[53]  B. Baltunis,et al.  Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of Pinus radiata at two locations in Australia , 2007 .

[54]  W. Foley,et al.  Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. , 2007, The New phytologist.

[55]  Xavier Estivill,et al.  SNPassoc: an R package to perform whole genome association studies , 2007, Bioinform..

[56]  P. Legendre,et al.  Variation partitioning of species data matrices: estimation and comparison of fractions. , 2006, Ecology.

[57]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[58]  J. V. D. van der Werf,et al.  Simultaneous Fine Mapping of Multiple Closely Linked Quantitative Trait Loci Using Combined Linkage Disequilibrium and Linkage With a General Pedigree , 2006, Genetics.

[59]  P. Ingvarsson,et al.  Clinal Variation in phyB2, a Candidate Gene for Day-Length-Induced Growth Cessation and Bud Set, Across a Latitudinal Gradient in European Aspen (Populus tremula) , 2006, Genetics.

[60]  C. Bastien,et al.  Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. , 2005, The New phytologist.

[61]  D. Neale,et al.  Association genetics of complex traits in conifers. , 2004, Trends in plant science.

[62]  D. Balding,et al.  Identifying adaptive genetic divergence among populations from genome scans , 2004, Molecular ecology.

[63]  L. Pâques,et al.  Chloroplast and mitochondrial molecular tests identify European×Japanese larch hybrids , 2004, Theoretical and Applied Genetics.

[64]  S. Jeandroz,et al.  A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers , 2004, Theoretical and Applied Genetics.

[65]  Shizhong Xu,et al.  Theoretical basis of the Beavis effect. , 2003, Genetics.

[66]  V. Le Corre,et al.  Genetic variability at neutral markers, quantitative trait land trait in a subdivided population under selection. , 2003, Genetics.

[67]  Shizhong Xu Estimating polygenic effects using markers of the entire genome. , 2003, Genetics.

[68]  M. Goddard,et al.  The distribution of the effects of genes affecting quantitative traits in livestock , 2001, Genetics Selection Evolution.

[69]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[70]  Corbin D. Jones,et al.  Detecting the undetected: estimating the total number of loci underlying a quantitative trait. , 2000, Genetics.

[71]  P. Donnelly,et al.  Association mapping in structured populations. , 2000, American journal of human genetics.

[72]  P. Sham,et al.  Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. , 2000, American journal of human genetics.

[73]  A. Rohde,et al.  Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus. , 2000, Genetics.

[74]  W. Ewens Genetics and analysis of quantitative traits , 1999 .

[75]  H. A. Orr,et al.  THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION , 1998, Evolution; international journal of organic evolution.

[76]  R. Latta Differentiation of Allelic Frequencies at Quantitative Trait Loci Affecting Locally Adaptive Traits , 1998, The American Naturalist.

[77]  J. Witte,et al.  Genetic dissection of complex traits , 1996, Nature Genetics.

[78]  J. Witte,et al.  Genetic dissection of complex traits. , 1994, Nature genetics.

[79]  R. Sederoff,et al.  Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. , 1994, Genetics.

[80]  J. Cornelius Heritabilities and additive genetic coefficients of variation in forest trees , 1994 .

[81]  E. Lander,et al.  Genetic dissection of complex traits science , 1994 .

[82]  G. Rehfeldt Early selection in Pinus ponderosa : compromises between growth potential and growth rhythm in developing breeding strategies , 1992 .

[83]  Eric S. Lander,et al.  Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms , 1988, Nature.

[84]  R. Lande The minimum number of genes contributing to quantitative variation between and within populations. , 1981, Genetics.

[85]  W. Castle AN IMPROVED METHOD OF ESTIMATING THE NUMBER OF GENETIC FACTORS CONCERNED IN CASES OF BLENDING INHERITANCE. , 1921, Science.