Should I stay or should I go? A latent threshold approach to large‐scale mixture innovation models

This paper proposes a straightforward algorithm to carry out inference in large time-varying parameter vector autoregressions (TVP-VARs) with mixture innovation components for each coefficient in the system. We significantly decrease the computational burden by approximating the latent indicators that drive the time-variation in the coefficients with a latent threshold process that depends on the absolute size of the shocks. The merits of our approach are illustrated with two applications. First, we forecast the US term structure of interest rates and demonstrate forecast gains of the proposed mixture innovation model relative to other benchmark models. Second, we apply our approach to US macroeconomic data and find significant evidence for time-varying effects of a monetary policy tightening.

[1]  Joseph P. Byrne,et al.  Forecasting the Term Structure of Government Bond Yields in Unstable Environments , 2017 .

[2]  Yong Song,et al.  An Efficient Bayesian Approach to Multiple Structural Change in Multivariate Time Series , 2018 .

[3]  E. Moench Forecasting the Yield Curve in a Data-Rich Environment: A No-Arbitrage Factor-Augmented VAR Approach , 2006, SSRN Electronic Journal.

[4]  Gregor Kastner,et al.  Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models , 2014, Comput. Stat. Data Anal..

[5]  Michele Lenza,et al.  Prior Selection for Vector Autoregressions , 2012, Review of Economics and Statistics.

[6]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[7]  H. Mumtaz,et al.  The great moderation of the term structure of UK interest rates , 2009 .

[8]  Florian Huber,et al.  Unconventional U.S. Monetary Policy: New Tools, Same Channels? , 2018, Journal of Risk and Financial Management.

[9]  C. Sims,et al.  Were there Regime Switches in U.S. Monetary Policy , 2006 .

[10]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[11]  Brian Neelon,et al.  Bayesian Isotonic Regression and Trend Analysis , 2004, Biometrics.

[12]  T. Sargent,et al.  Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S. , 2003 .

[13]  Jonathan H. Wright,et al.  The U.S. Treasury Yield Curve: 1961 to the Present , 2006 .

[14]  T. Sargent,et al.  Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S. , 2005 .

[15]  Sylvia Fruhwirth-Schnatter,et al.  Achieving shrinkage in a time-varying parameter model framework , 2016, Journal of Econometrics.

[16]  Dimitris Korobilis,et al.  Large Time-Varying Parameter VARs , 2012 .

[17]  Rodney W. Strachan,et al.  On the evolution of the monetary policy transmission mechanism , 2009 .

[18]  Todd E. Clark,et al.  No Arbitrage Priors, Drifting Volatilities, and the Term Structure of Interest Rates , 2014 .

[19]  R. Kohn,et al.  Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models , 2005 .

[20]  F. Diebold,et al.  Forecasting the Term Structure of Government Bond Yields , 2002 .

[21]  G. Kapetanios,et al.  Forecasting Government Bond Yields with Large Bayesian Vars , 2010 .

[22]  M. West,et al.  Bayesian Analysis of Latent Threshold Dynamic Models , 2013 .

[23]  Jouchi Nakajima,et al.  Identifying conventional and unconventional monetary policy shocks: a latent threshold approach , 2015 .

[24]  Simon M. Potter,et al.  Estimation and forecasting in models with multiple breaks , 2007 .

[25]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[26]  H. Mumtaz,et al.  Time-Varying Yield Curve Dynamics and Monetary Policy , 2009 .

[27]  Antonello D’Agostino,et al.  Macroeconomic Forecasting and Structural Change , 2009, SSRN Electronic Journal.

[28]  V. Rocková,et al.  Dynamic Variable Selection with Spike-and-Slab Process Priors , 2017, Bayesian Analysis.

[29]  Carlo A. Favero,et al.  Term Structure Forecasting: No-Arbitrage Restrictions vs. Large Information Set , 2007 .

[30]  C. Baumeister,et al.  Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound , 2012 .

[31]  G. Koop,et al.  Forecasting In ation Using Dynamic Model Averaging , 2009 .

[32]  F. Smets,et al.  Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach , 2007 .

[33]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[34]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[35]  M. West,et al.  Dynamic Factor Volatility Modeling: A Bayesian Latent Threshold Approach , 2013 .

[36]  T. Sargent,et al.  Evolving Post-World War II U.S. Inflation Dynamics , 2001, NBER Macroeconomics Annual.

[37]  Nikolas Kantas,et al.  Bayesian parameter inference for partially observed stopped processes , 2012, Stat. Comput..

[38]  J. Stock,et al.  Evidence on Structural Instability in Macroeconomic Time Series Relations , 1994 .

[39]  M. West,et al.  Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models , 2014 .

[40]  S. Frühwirth-Schnatter,et al.  Stochastic model specification search for Gaussian and partial non-Gaussian state space models , 2010 .

[41]  Dongchu Sun,et al.  Bayesian stochastic search for VAR model restrictions , 2008 .

[42]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[43]  Sveriges Riksbank Efficient Bayesian inference for multiple change-point and mixture innovation models , 2006 .

[44]  The U.S. Treasury yield curve: 1961 to the present , 2006 .

[45]  Gianni Amisano,et al.  Prediction with Misspecified Models , 2012 .

[46]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[47]  J. Geweke,et al.  Prediction Using Several Macroeconomic Models , 2013, Review of Economics and Statistics.

[48]  J. Griffin,et al.  Time-Varying Sparsity in Dynamic Regression Models , 2013 .

[49]  B. Miguel,et al.  Hierarchical shrinkage in time-varying parameter models , 2011 .

[50]  Dimitris Korobilis,et al.  Hierarchical Shrinkage in Time-Varying Parameter Models: Hierarchical Shrinkage in Time-Varying Parameter Models , 2014 .

[51]  S. Koopman,et al.  Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson–Siegel Model With Time-Varying Parameters , 2010 .

[52]  R. Kohn,et al.  Efficient Bayesian Inference for Dynamic Mixture Models , 2000 .

[53]  Lawrence J. Christiano,et al.  Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy , 2001, Journal of Political Economy.

[54]  Stochastic Model Specification Search for Time-Varying Parameter VARs , 2014 .

[55]  Olivier Coibion Are the Effects of Monetary Policy Shocks Big or Small? , 2010 .

[56]  G. Koop,et al.  Bayesian Multivariate Time Series Methods for Empirical Macroeconomics , 2009 .

[57]  Wolfgang Hörmann,et al.  Generating generalized inverse Gaussian random variates , 2013, Statistics and Computing.

[58]  J. Geweke,et al.  Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns , 2008 .

[59]  A. Siegel,et al.  Parsimonious modeling of yield curves , 1987 .

[60]  Joshua C. C. Chan,et al.  Stochastic Model Specification Search for Time-Varying Parameter VARs , 2014 .

[61]  Gregor Kastner,et al.  Dealing with Stochastic Volatility in Time Series Using the R Package stochvol , 2016, 1906.12134.

[62]  R. McCulloch,et al.  Bayesian Inference and Prediction for Mean and Variance Shifts in Autoregressive Time Series , 1993 .

[63]  E. Moench Term structure surprises: the predictive content of curvature, level, and slope , 2012 .