HfO2:Gd-based ferroelectric memristor as bio-synapse emulators

In this work, a memristor device with Pd/HfO2:Gd/La0.67Sr0.33MnO3/SrTiO3/Si was prepared, and its synaptic behavior was investigated. The memristor shows excellent performance in I–V loops and ferroelectric properties. Through polarization, the conductance modulation of the memristor is achieved by the reversal of the ferroelectric domain. In addition, we simulate biological synapses and synaptic plasticities such as spike-timing-dependent plasticity, paired-pulse facilitation, and an excitatory postsynaptic current. These results lay the foundation for the development of synaptic functions in Hf-based ferroelectric thin films and will promote the development of synaptic applications for neuromorphic computing chips.

[1]  Jianhui Zhao,et al.  A Robust Memristor Based on Epitaxial Vertically Aligned Nanostructured BaTiO3−CeO2 Films on Silicon , 2022, Advanced materials.

[2]  H. Zhang,et al.  Towards an universal artificial synapse using MXene-PZT based ferroelectric memristor , 2022, Ceramics International.

[3]  S. Cheong,et al.  Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y , 2020, Nature Materials.

[4]  T. Tanaka,et al.  Regulating phase transformation kinetics via redox reaction in ferroelectric Ge-doped HfO2 , 2020 .

[5]  C. C. Dey,et al.  Orthorhombic phases in bulk pure HfO2: Experimental observation from perturbed angular correlation spectroscopy , 2020 .

[6]  P. Zhou,et al.  Self‐Assembled Networked PbS Distribution Quantum Dots for Resistive Switching and Artificial Synapse Performance Boost of Memristors , 2018, Advanced materials.

[7]  Su‐Ting Han,et al.  Gate‐Tunable Synaptic Plasticity through Controlled Polarity of Charge Trapping in Fullerene Composites , 2018, Advanced Functional Materials.

[8]  Kenneth K. Tsang,et al.  Biological plausibility and stochasticity in scalable VO2 active memristor neurons , 2018, Nature Communications.

[9]  Patrick Polakowski,et al.  Ferroelectricity in undoped hafnium oxide , 2015 .

[10]  Chang-Beom Eom,et al.  Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. , 2015, ACS nano.

[11]  Yu-Fen Wang,et al.  Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device , 2015, Scientific Reports.

[12]  Uwe Schroeder,et al.  On the structural origins of ferroelectricity in HfO2 thin films , 2015 .

[13]  Di Wu,et al.  Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. , 2013, Nature materials.

[14]  E. Tsymbal,et al.  Ferroelectric tunnel memristor. , 2012, Nano letters.

[15]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[16]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[17]  Lothar Frey,et al.  Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications , 2011 .

[18]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[19]  J. Liu,et al.  High‐Performance Programmable Memory Devices Based on Co‐Doped BaTiO3 , 2011, Advanced materials.

[20]  C. Butter,et al.  Verbesserung der linksventrikulären Kontraktilität durch Stimulation in der absoluten Refraktärperiode , 2011, Herzschrittmachertherapie + Elektrophysiologie.

[21]  Yidong Xia,et al.  Effects of the electroforming polarity on bipolar resistive switching characteristics of SrTiO3−δ films , 2010 .

[22]  Timothée Masquelier,et al.  Competitive STDP-Based Spike Pattern Learning , 2009, Neural Computation.

[23]  A. Welford THE ‘PSYCHOLOGICAL REFRACTORY PERIOD’ AND THE TIMING OF HIGH‐SPEED PERFORMANCE—A REVIEW AND A THEORY , 1952 .