Modeling and simulation of proton exchange membrane fuel cell systems

Abstract This paper presents an electrochemical model for simulation and evaluation of the performance of proton exchange membrane (PEM) fuel cell. The results of the model are used to predict the efficiency and power of the fuel cell as a function of operational parameters of the cell, like temperature, partial pressures and membrane humidity. The influence of temperature on fuel cell's characteristics is more pronounced than the influence of partial pressures and membrane humidity. The effect of platinum loading on cell performance is examined with Pt loadings of 0.18, 0.38 and 0.4 mg cm−2. The kinetic parameters (electron transfer coefficient, exchange current density) are found to be platinum loading dependent.

[1]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[2]  Marc A. Rosen,et al.  Modelling and analysis of a solid polymer fuel cell system for transportation applications , 2001 .

[3]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[4]  Massimo Santarelli,et al.  Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature , 2006 .

[5]  John Hirschenhofer Fuel cell status, 1994 , 1994 .

[6]  Xianguo Li,et al.  Mathematical modeling of proton exchange membrane fuel cells , 2001 .

[7]  Jin Jiang,et al.  An improved dynamic model considering effects of temperature and equivalent internal resistance for PEM fuel cell power modules , 2006 .

[8]  Wan Ramli Wan Daud,et al.  Surface analysis for catalyst layer (PT/PTFE/C) and diffusion layer (PTFE/C) for proton exchange membrane fuel cells systems (PEMFCs) , 2009 .

[9]  K. Agbossou,et al.  Dynamic behavior of a PEM fuel cell stack for stationary applications , 2001 .

[10]  Murat Arcak,et al.  An algorithm for estimation of membrane water content in PEM fuel cells , 2006 .

[11]  G. Maggio,et al.  Modeling polymer electrolyte fuel cells: an innovative approach , 2001 .

[12]  A. Shukla,et al.  Diffusion layer parameters influencing optimal fuel cell performance , 2000 .

[13]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[14]  Hubertus P.L.H. van Bussel,et al.  Dynamic model of solid polymer fuel cell water management , 1998 .

[15]  J. C. Amphlett,et al.  A model predicting transient responses of proton exchange membrane fuel cells , 1996 .

[16]  J. Song,et al.  Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method , 2001 .

[17]  K. Oguro,et al.  Simulation of a polymer electrolyte fuel cell electrode , 1997 .