Multi-applicative tetragonal TiO 2 /SnO 2 nanocomposites for photocatalysis and gas sensing

Abstract TiO2-based mixed metal oxide heteronanostructures have multiple applications in photocatalysis and gas sensing because of their charge transport properties. In this study, we prepared tetragonal TiO2/SnO2 nanocomposites (NCs) with different weight percentages using a simple wet impregnation method. The physicochemical properties of the NCs were investigated using X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet–visible spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and Brunauer–Emmett–Teller surface area analysis. The results showed that the surface area of the NCs increased significantly and the anatase TiO2 was sensitized after the addition of a small amount of cassiterite SnO2 NPs. We systematically studied the as-prepared NCs during the photocatalytic degradation of Congo Red dye under visible light irradiation (λ > 420 nm) and NH3 gas sensing, which demonstrated the efficient photocatalytic performance and the superior sensing response of the catalyst with a weight composition of 25% SnO2 in TiO2 (4:1) compared with the other NCs or the bare individual nanoparticles. The improved photocatalytic and gas sensing performance of the TiO2/SnO2 (4:1) NCs may be attributed to the increased active surface area, the increased adsorption of the dye and target gas molecules, as well as efficient electron–hole charge separation and transfer.

[1]  M. Bagheri-Mohagheghi,et al.  Study of structural, electrical, optical, thermoelectric and photoconductive properties of S and Al co-doped SnO2 semiconductor thin films prepared by spray pyrolysis , 2012 .

[2]  Francisco Molina-Lopez,et al.  Development of a new generation of ammonia sensors on printed polymeric hotplates. , 2014, Analytical chemistry.

[3]  C. Rao,et al.  MoO3/TiO2 and Bi2MoO6 as ammonia sensors , 1994 .

[4]  S. Delekar,et al.  Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs , 2016 .

[5]  Zhongchang Wang,et al.  Enhanced gas sensing properties by SnO2 nanosphere functionalized TiO2 nanobelts , 2012 .

[6]  C. Xie,et al.  CdS/TiO2 nanocomposite film and its enhanced photoelectric responses to dry air and formaldehyde induced by visible light at room temperature , 2015 .

[7]  F. Han,et al.  Microstructure and photocatalytic activity of mesoporous TiO2 film coated on an aluminum foam , 2010 .

[8]  Zhenyi Zhang,et al.  Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications , 2015 .

[9]  P. M. Kumar,et al.  Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states , 2000 .

[10]  S. Patil,et al.  Sunlight-assisted photocatalytic degradation of textile effluent and Rhodamine B by using iodine doped TiO2 nanoparticles , 2017 .

[11]  Guohua Chen,et al.  Photoelectrocatalytic materials for environmental applications , 2009 .

[12]  K. Zakrzewska,et al.  TiO2-SnO2 Composites and Solid Solutions for Chemical Nanosensors , 2012 .

[13]  C. H. Bhosale,et al.  Visible light assisted photoelectrocatalytic degradation of sugarcane factory wastewater by sprayed CZTS thin films , 2017 .

[14]  M. M. Kamble,et al.  Effect of calcination on structural, morphological and photoelectrochemical performance of SnO2/TiO2 nanostructure films , 2015 .

[15]  S. Delekar,et al.  In situ sol-gel synthesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications , 2017 .

[16]  B. Dutta,et al.  Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst , 2016 .

[17]  C. H. Bhosale,et al.  Photoelectrocatalytic degradation of phthalic acid using spray deposited stratified WO 3 /ZnO thin films under sunlight illumination , 2017 .

[18]  Hong Liu,et al.  Enhanced gas sensing property of SnO2 nanoparticles by constructing the SnO2–TiO2 nanobelt heterostructure , 2015 .

[19]  Jin Hyeok Kim,et al.  Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications , 2015 .

[20]  P. Harrison,et al.  Evolution of Microstructure during the Thermal Activation of Chromium-Promoted Tin(IV) Oxide Catalysts: An FT-IR, FT-Raman, XRD, TEM, and XANES/EXAFS Study , 1999 .

[21]  C. Ribeiro,et al.  TiO2-SnO2 heterostructures applied to dye photodegradation: The relationship between variables of synthesis and photocatalytic performance , 2014 .

[22]  Y. Hunge Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin films , 2017 .

[23]  K. Koumoto,et al.  Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution , 2003 .

[24]  Rui Xu,et al.  Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation , 2008 .

[25]  Jordi Arbiol,et al.  NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas sensing applications , 2004 .

[26]  Patrick Drogui,et al.  Modified TiO2 For Environmental Photocatalytic Applications: A Review , 2013 .

[27]  S. Delekar,et al.  Efficient degradation of Azorubin S colourant in the commercial jam-jelly food samples using TiO2-CoFe2O4 nanocomposites in visible light , 2017 .

[28]  A. Bumajdad,et al.  Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores , 2014, Journal of Materials Science.

[29]  Xin Li,et al.  The synthesis of ZnO/SnO2 porous nanofibers for dye adsorption and degradation. , 2015, Dalton transactions.

[30]  R. Ruffo,et al.  Surface interaction of WO3 nanocrystals with NH3. Role of the exposed crystal surfaces and porous structure in enhancing the electrical response , 2014 .

[31]  S. Delekar,et al.  Titania–supported silver nanoparticles: An efficient and reusable catalyst for reduction of 4-nitrophenol , 2013 .

[32]  J. Jang,et al.  Fabrication of A/R-TiO 2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation , 2017 .

[33]  C. Park,et al.  Synthesis, characterization, and photocatalytic properties of ZnO nano-flower containing TiO2 NPs , 2012 .

[34]  Duk-Dong Lee,et al.  Effects of added TiO2 on the characteristics of SnO2-based thick film gas sensors , 1992 .

[35]  C. H. Bhosale,et al.  Enhanced photocatalytic activity of sprayed Au doped ferric oxide thin films for salicylic acid degradation in aqueous medium. , 2015, Journal of photochemistry and photobiology. B, Biology.

[36]  V. D. Rodríguez,et al.  Effect of reaction temperature and sacrificial agent on the photocatalytic H2-production of Pt-TiO2 , 2017 .

[37]  Suhas P. Deshmukh,et al.  Different Strategies for Modification of Titanium Dioxide as Heterogeneous Cata lyst in Chemical Transformations , 2017 .

[38]  Travis S. Longenbach,et al.  Strong Coupling of Cr and N in Cr–N-doped TiO2 and Its Effect on Photocatalytic Activity , 2011 .

[39]  Y. Hunge Photoelectrocatalytic degradation of 4-chlorophenol using nanostructured α-Fe2O3 thin films under sunlight illumination , 2017, Journal of Materials Science: Materials in Electronics.

[40]  Minghua Zhou,et al.  Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. , 2008, Journal of hazardous materials.

[41]  Shengtao Jiang,et al.  The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes , 2011 .

[42]  Zhongchang Wang,et al.  Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds , 2010 .

[43]  Yangyang He,et al.  Rational tailoring of ZnSnO₃/TiO₂ heterojunctions with bioinspired surface wettability for high-performance humidity nanosensors. , 2015, Nanoscale.

[44]  I. Parkin,et al.  Aerosol assisted chemical vapour deposition of hydrophobic TiO2–SnO2 composite film with novel microstructure and enhanced photocatalytic activity , 2013 .

[45]  P. Saravanan,et al.  Visible-light-driven SnO2/TiO2 nanotube nanocomposite for textile effluent degradation , 2015 .

[46]  T. Xie,et al.  Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. , 2010, Physical chemistry chemical physics : PCCP.

[47]  P. Vlăzan,et al.  Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method , 2015 .

[48]  J. Herrmann,et al.  PHOTOCATALYTIC DEGRADATION OF VARIOUS TYPES OF DYES (ALIZARIN S, CROCEIN ORANGE G, METHYL RED, CONGO RED, METHYLENE BLUE) IN WATER BY UV-IRRADIATED TITANIA , 2002 .

[49]  Heejung Jung,et al.  Nitridation and Layered Assembly of Hollow TiO2 Shells for Electrochemical Energy Storage , 2014 .

[50]  C. Karunakaran,et al.  Solvothermal Synthesis of CeO2–TiO2 Nanocomposite for Visible Light Photocatalytic Detoxification of Cyanide , 2013 .

[51]  C. H. Bhosale,et al.  Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. , 2017, Ultrasonics sonochemistry.

[52]  Shahruz Nasirian,et al.  Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions , 2015 .

[53]  Joan Ramon Morante,et al.  Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors , 2004 .

[54]  G. C. Sharma,et al.  Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings , 2015, Journal of Materials Science.

[55]  M. Navaneethan,et al.  Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres , 2017 .

[56]  Jimin Xie,et al.  A controlled solvethermal approach to synthesize nanocrystalline iron oxide for congo red adsorptive removal from aqueous solutions , 2016, Journal of Materials Science.

[57]  M. Rincón,et al.  Anomalous Sensor Response of TiO2 Films: Electrochemical Impedance Spectroscopy and ab Initio Studies , 2009 .

[58]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[59]  Steve F. A. Acquah,et al.  A simple strategy for the anchoring of anatase titania on multi-walled carbon nanotubes for solar energy harvesting , 2017 .