Efficient Arnoldi-type algorithms for rational eigenvalue problems arising in fluid-solid systems

We develop and analyze efficient methods for computing damped vibration modes of an acoustic fluid confined in a cavity with absorbing walls capable of dissipating acoustic energy. The discretization in terms of pressure nodal finite elements gives rise to a rational eigenvalue problem. Numerical evidence shows that there are no spurious eigenmodes for such discretization and also confirms that the discretization based on nodal pressures is much more efficient than that based on Raviart-Thomas finite elements for the displacement field. The trimmed linearization method is used to linearize the associated rational eigenvalue problem into a generalized eigenvalue problem (GEP) of the form Ax=@lBx. For solving the GEP we apply Arnoldi algorithm to two different types of single matrices B^-^1A and AB^-^1. Numerical accuracy shows that the application of Arnoldi on AB^-^1 is better than that on B^-^1A.

[1]  Lucia Gastaldi,et al.  Mixed finite element methods in fluid structure systems , 1996 .

[2]  Rodolfo Rodríguez,et al.  The order of convergence of Eigenfrequencies in finite element approximations of fluid-structure interaction problems , 1996, Math. Comput..

[3]  So-Hsiang Chou,et al.  Conservative P1 Conforming and Nonconforming Galerkin FEMs: Effective Flux Evaluation via a Nonmixed Method Approach , 2000, SIAM J. Numer. Anal..

[4]  Robert L. Taylor,et al.  Vibration analysis of fluid-solid systems using a finite element displacement formulation , 1990 .

[5]  Wen-Wei Lin,et al.  Jacobi–Davidson methods for cubic eigenvalue problems , 2005, Numer. Linear Algebra Appl..

[6]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[7]  W. Greub Linear Algebra , 1981 .

[8]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[9]  Alfredo Bermúdez,et al.  Finite element computation of the vibration modes of a fluid—solid system , 1994 .

[10]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[11]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[12]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[13]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[14]  K. Bathe,et al.  DISPLACEMENT/PRESSURE BASED MIXED FINITE ELEMENT FORMULATIONS FOR ACOUSTIC FLUID–STRUCTURE INTERACTION PROBLEMS , 1997 .

[15]  Yves Ousset,et al.  A displacement method for the analysis of vibrations of coupled fluid-structure systems , 1978 .

[16]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[17]  G. W. Stewart,et al.  Addendum to "A Krylov-Schur Algorithm for Large Eigenproblems" , 2002, SIAM J. Matrix Anal. Appl..

[18]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[19]  Alfredo Bermúdez,et al.  Modelling and numerical solution of elastoacoustic vibrations with interface damping , 1999 .

[20]  Heinrich Voss,et al.  Iterative projection methods for computing relevant energy states of a quantum dot , 2006, J. Comput. Phys..

[21]  A. Bermúdez,et al.  Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .

[22]  D. Sorensen,et al.  4. The Implicitly Restarted Arnoldi Method , 1998 .

[23]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[24]  K. Bathe,et al.  A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .

[25]  Paul Van Dooren,et al.  Normwise Scaling of Second Order Polynomial Matrices , 2004, SIAM J. Matrix Anal. Appl..

[26]  Zhaojun Bai,et al.  Solving Rational Eigenvalue Problems via Linearization , 2011, SIAM J. Matrix Anal. Appl..

[27]  Ricardo G. Durán,et al.  Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..