Stability and convergence of two-level iterative methods for the stationary incompressible magnetohydrodynamics with different Reynolds numbers

Abstract In the paper we develop some two-level finite element iterative methods and use these methods to solve the stationary incompressible magnetohydrodynamics (MHD) with different Reynolds numbers under some different uniqueness conditions. Firstly, we use the Stokes type iterative method, Newton type iterative method and Oseen type iterative method of m times on a coarse mesh with mesh size H and then solve a linear problem with the Stokes type, Newton type and Oseen type correction of one time on a fine grid with mesh sizes h ≪ H . Furthermore, we analyze the uniform stability and convergence of these methods with respect to Reynolds numbers, mesh sizes h and H and iterative times m. Finally, the stationary incompressible MHD equations with large Reynolds number are researched by the one-level finite element method based on the Oseen type iteration on a fine mesh under a weak uniqueness condition.

[1]  D. Schötzau,et al.  A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .

[2]  William Layton,et al.  A two-level discretization method for the Navier-Stokes equations , 1993 .

[3]  Yinnian He,et al.  Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics , 2014 .

[4]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[5]  William Layton,et al.  Two-level Picard and modified Picard methods for the Navier-Stokes equations , 1995 .

[6]  S. Ravindran Linear feedback control and approximation for a system governed by unsteady MHD equations , 2008 .

[7]  Janet Peterson,et al.  On the Global Unique Solvability of Initial-Boundary Value Problems for the Coupled Modified Navier–Stokes and Maxwell Equations , 2004 .

[8]  Dominik Schötzau,et al.  Mixed finite element approximation of incompressible MHD problems based on weighted regularization , 2004 .

[9]  Weiwei Sun,et al.  Multi-level spectral galerkin method for the navier-stokes problem I : spatial discretization , 2005, Numerische Mathematik.

[10]  Yin-nianHe,et al.  A TWO-LEVEL FINITE ELEMENT GALERKIN METHOD FOR THE NONSTATIONARY NAVIER-STOKES EQUATIONS I: SPATIAL DISCRETIZATION , 2004 .

[11]  M. Gunzburger,et al.  On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .

[12]  Vivette Girault,et al.  Two-grid finite-element schemes for the transient Navier-Stokes problem , 2001 .

[13]  William Layton,et al.  A multilevel mesh independence principle for the Navier-Stokes equations , 1996 .

[14]  Yinnian He,et al.  Multi-level spectral Galerkin method for the Navier–Stokes equations, II: time discretization , 2006, Adv. Comput. Math..

[15]  M. Discacciati Numerical Approximation of a Steady MHD Problem , 2008 .

[16]  Yinnian He,et al.  Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations , 2015 .

[17]  Yinnian He,et al.  Two-Level Method Based on Finite Element and Crank-Nicolson Extrapolation for the Time-Dependent Navier-Stokes Equations , 2003, SIAM J. Numer. Anal..

[18]  Janet S. Peterson,et al.  A two-level newton, finite element algorithm for approximating electrically conducting incompressible fluid flows , 1994 .

[19]  Yinnian He,et al.  Streamline diffusion finite element method for stationary incompressible magnetohydrodynamics , 2014 .

[20]  Dominik Schötzau,et al.  Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.

[21]  Yinnian He,et al.  A simplified two-level method for the steady Navier–Stokes equations , 2008 .

[22]  Yinnian He,et al.  A multilevel finite element method in space‐time for the Navier‐Stokes problem , 2005 .

[23]  T. Lelièvre,et al.  Mathematical Methods for the Magnetohydrodynamics of Liquid Metals , 2006 .

[24]  Yinnian He,et al.  Some iterative finite element methods for steady Navier-Stokes equations with different viscosities , 2013, J. Comput. Phys..

[25]  Tong Zhang,et al.  A two-level finite volume method for the unsteady Navier-Stokes equations based on two local Gauss integrations , 2014, J. Comput. Appl. Math..

[26]  William Layton,et al.  A TWO-LEVEL DISCRETIZATION METHOD FOR THE STATIONARY MHD EQUATIONS , 1997 .

[27]  Maxim A. Olshanskii,et al.  Two-level method and some a priori estimates in unsteady Navier—Stokes calculations , 1999 .

[28]  A. I. Nesliturk,et al.  Two‐level finite element method with a stabilizing subgrid for the incompressible MHD equations , 2009 .

[29]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[30]  Yinnian He,et al.  Two-Level Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics , 2015, J. Sci. Comput..

[31]  Yinnian He,et al.  Stability and convergence of iterative methods related to viscosities for the 2D/3D steady Navier–Stokes equations☆ , 2015 .

[32]  Yinnian He,et al.  Two‐level Newton iterative method for the 2D/3D steady Navier‐Stokes equations , 2012 .

[33]  Yinnian He,et al.  Two-level Stabilized Finite Element Methods for the Steady Navier–Stokes Problem , 2005, Computing.